Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
@@ -172,6 +172,13 @@ tag_model = ram(pretrained='preset/models/ram_swin_large_14m.pth',
|
|
172 |
tag_model.eval()
|
173 |
tag_model.to(device, dtype=weight_dtype)
|
174 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
175 |
@spaces.GPU()
|
176 |
def process(
|
177 |
input_image: Image.Image,
|
@@ -187,7 +194,7 @@ def process(
|
|
187 |
sample_times = 1,
|
188 |
) -> List[np.ndarray]:
|
189 |
|
190 |
-
|
191 |
|
192 |
process_size = 512
|
193 |
resize_preproc = transforms.Compose([
|
@@ -251,62 +258,74 @@ def process(
|
|
251 |
return input_image, images[0]
|
252 |
|
253 |
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
with
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
278 |
-
)
|
279 |
-
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
|
280 |
-
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
|
281 |
-
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
|
282 |
-
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
|
283 |
-
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
|
284 |
-
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
|
285 |
-
scale_factor = gr.Number(label="SR Scale", value=4)
|
286 |
-
with gr.Column():
|
287 |
-
result_gallery = ImageSlider(
|
288 |
-
interactive=False,
|
289 |
-
label="Generated Image",
|
290 |
-
)
|
291 |
-
examples = gr.Examples(
|
292 |
-
examples=[
|
293 |
-
[
|
294 |
-
"preset/datasets/test_datasets/179.png",
|
295 |
-
],
|
296 |
-
[
|
297 |
-
"preset/datasets/test_datasets/apologise.png",
|
298 |
-
],
|
299 |
-
],
|
300 |
-
inputs=[
|
301 |
-
input_image,
|
302 |
-
],
|
303 |
-
outputs=[result_gallery],
|
304 |
-
fn=process,
|
305 |
-
cache_examples=True,
|
306 |
)
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
311 |
|
312 |
-
|
|
|
172 |
tag_model.eval()
|
173 |
tag_model.to(device, dtype=weight_dtype)
|
174 |
|
175 |
+
def preprocess_image(
|
176 |
+
input_image: Image.Image
|
177 |
+
)
|
178 |
+
input_image = input_image.resize((256, 256), Image.Resampling.BILINEAR)
|
179 |
+
|
180 |
+
return input_image
|
181 |
+
|
182 |
@spaces.GPU()
|
183 |
def process(
|
184 |
input_image: Image.Image,
|
|
|
194 |
sample_times = 1,
|
195 |
) -> List[np.ndarray]:
|
196 |
|
197 |
+
|
198 |
|
199 |
process_size = 512
|
200 |
resize_preproc = transforms.Compose([
|
|
|
258 |
return input_image, images[0]
|
259 |
|
260 |
|
261 |
+
css = """
|
262 |
+
#col-container {
|
263 |
+
margin: 0 auto;
|
264 |
+
max-width: 1024px;
|
265 |
+
}
|
266 |
+
"""
|
267 |
+
|
268 |
+
with gr.Blocks(css=css) as demo:
|
269 |
+
|
270 |
+
with gr.Column(elem_id="col-container"):
|
271 |
+
|
272 |
+
with gr.Row():
|
273 |
+
gr.HTML(
|
274 |
+
"""
|
275 |
+
<div style="text-align: center;">
|
276 |
+
<p style="font-size:16px; display: inline; margin: 0;">
|
277 |
+
<strong>SeeSR</strong> – Towards Semantics-Aware Real-World Image Super-Resolution
|
278 |
+
</p>
|
279 |
+
<a href="https://github.com/cswry/SeeSR" style="display: inline-block; vertical-align: middle; margin-left: 0.5em;">
|
280 |
+
<img src="https://img.shields.io/badge/GitHub-Repo-blue" alt="GitHub Repo">
|
281 |
+
</a>
|
282 |
+
</div>
|
283 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
284 |
)
|
285 |
+
with gr.Row():
|
286 |
+
with gr.Column():
|
287 |
+
input_image = gr.Image(type="pil")
|
288 |
+
run_button = gr.Button("Magnify 4x")
|
289 |
+
preprocessed_image = gr.Image(label="preprocess image", type="pil")
|
290 |
+
with gr.Accordion("Options", visible=False):
|
291 |
+
user_prompt = gr.Textbox(label="User Prompt", value="")
|
292 |
+
positive_prompt = gr.Textbox(label="Positive Prompt", value="clean, high-resolution, 8k, best quality, masterpiece")
|
293 |
+
negative_prompt = gr.Textbox(
|
294 |
+
label="Negative Prompt",
|
295 |
+
value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
|
296 |
+
)
|
297 |
+
cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
|
298 |
+
num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
|
299 |
+
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
|
300 |
+
sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
|
301 |
+
latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
|
302 |
+
latent_tiled_overlap = gr.Slider(label="Diffusion Tile Overlap", minimum=4, maximum=16, value=4, step=1)
|
303 |
+
scale_factor = gr.Number(label="SR Scale", value=4)
|
304 |
+
with gr.Column():
|
305 |
+
result_gallery = ImageSlider(
|
306 |
+
interactive=False,
|
307 |
+
label="Generated Image",
|
308 |
+
)
|
309 |
+
examples = gr.Examples(
|
310 |
+
examples=[
|
311 |
+
[
|
312 |
+
"preset/datasets/test_datasets/179.png",
|
313 |
+
],
|
314 |
+
[
|
315 |
+
"preset/datasets/test_datasets/apologise.png",
|
316 |
+
],
|
317 |
+
],
|
318 |
+
inputs=[
|
319 |
+
input_image,
|
320 |
+
],
|
321 |
+
outputs=[result_gallery],
|
322 |
+
fn=process,
|
323 |
+
cache_examples=True,
|
324 |
+
)
|
325 |
+
inputs = [
|
326 |
+
input_image,
|
327 |
+
]
|
328 |
+
run_button.click(fn=process, inputs=preprocessed_image, outputs=[result_gallery])
|
329 |
+
input_image.upload(fn=preprocess_image,inputs=input_image, outputs=[preprocessed_image])
|
330 |
|
331 |
+
demo.launch(share=True)
|