alexnasa commited on
Commit
c31306a
·
verified ·
1 Parent(s): d0ea956

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -9
app.py CHANGED
@@ -114,25 +114,25 @@ snapshot_download(
114
 
115
 
116
  snapshot_download(
117
- repo_id="stabilityai/stable-diffusion-2-1-base",
118
- local_dir="preset/models/stable-diffusion-2-1-base"
119
  )
120
 
 
121
  snapshot_download(
122
  repo_id="xinyu1205/recognize_anything_model",
123
  local_dir="preset/models/"
124
  )
125
 
126
-
127
  # Load scheduler, tokenizer and models.
128
- pretrained_model_path = 'preset/models/stable-diffusion-2-1-base'
129
  seesr_model_path = 'preset/models/seesr'
130
 
131
  scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
132
  text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
133
  tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
134
  vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
135
- feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
136
  unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
137
  controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
138
 
@@ -192,9 +192,9 @@ def magnify(
192
  user_prompt = "",
193
  positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
194
  negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
195
- num_inference_steps = 50,
196
  scale_factor = 4,
197
- cfg_scale = 7.5,
198
  seed = 123,
199
  latent_tiled_size = 320,
200
  latent_tiled_overlap = 4,
@@ -302,8 +302,8 @@ with gr.Blocks(css=css, theme=theme) as demo:
302
  label="Negative Prompt",
303
  value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
304
  )
305
- cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=7.5, step=0)
306
- num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=50, step=1)
307
  seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
308
  sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
309
  latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)
 
114
 
115
 
116
  snapshot_download(
117
+ repo_id="stabilityai/sd-turbo",
118
+ local_dir="preset/models/sd-turbo"
119
  )
120
 
121
+
122
  snapshot_download(
123
  repo_id="xinyu1205/recognize_anything_model",
124
  local_dir="preset/models/"
125
  )
126
 
 
127
  # Load scheduler, tokenizer and models.
128
+ pretrained_model_path = 'preset/models/sd-turbo'
129
  seesr_model_path = 'preset/models/seesr'
130
 
131
  scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
132
  text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
133
  tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
134
  vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
135
+ # feature_extractor = CLIPImageProcessor.from_pretrained(f"{pretrained_model_path}/feature_extractor")
136
  unet = UNet2DConditionModel.from_pretrained(seesr_model_path, subfolder="unet")
137
  controlnet = ControlNetModel.from_pretrained(seesr_model_path, subfolder="controlnet")
138
 
 
192
  user_prompt = "",
193
  positive_prompt = "clean, high-resolution, 8k, best quality, masterpiece",
194
  negative_prompt = "dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality",
195
+ num_inference_steps = 2,
196
  scale_factor = 4,
197
+ cfg_scale = 1,
198
  seed = 123,
199
  latent_tiled_size = 320,
200
  latent_tiled_overlap = 4,
 
302
  label="Negative Prompt",
303
  value="dotted, noise, blur, lowres, oversmooth, longbody, bad anatomy, bad hands, missing fingers, extra digit, fewer digits, cropped, worst quality, low quality"
304
  )
305
+ cfg_scale = gr.Slider(label="Classifier Free Guidance Scale (Set to 1.0 in sd-turbo)", minimum=1, maximum=10, value=1, step=0)
306
+ num_inference_steps = gr.Slider(label="Inference Steps", minimum=2, maximum=100, value=2, step=1)
307
  seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, value=231)
308
  sample_times = gr.Slider(label="Sample Times", minimum=1, maximum=10, step=1, value=1)
309
  latent_tiled_size = gr.Slider(label="Diffusion Tile Size", minimum=128, maximum=480, value=320, step=1)