XVerse / app.py
alexnasa's picture
Update app.py
3bc1e07 verified
raw
history blame
22.8 kB
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import spaces
import tempfile
from PIL import Image
import subprocess
import torch
import gradio as gr
import string
import random, time, os, math
from src.flux.generate import generate_from_test_sample, seed_everything
from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
from eval.tools.face_id import FaceID
from eval.tools.florence_sam import ObjectDetector
import shutil
import yaml
import numpy as np
dtype = torch.bfloat16
device = "cuda"
config_path = "train/config/XVerse_config_demo.yaml"
config = config_train = get_train_config(config_path)
# config["model"]["dit_quant"] = "int8-quanto"
config["model"]["use_dit_lora"] = False
model = CustomFluxPipeline(
config, device, torch_dtype=dtype,
)
model.pipe.set_progress_bar_config(leave=False)
face_model = FaceID(device)
detector = ObjectDetector(device)
config = get_train_config(config_path)
model.config = config
run_mode = "mod_only" # orig_only, mod_only, both
store_attn_map = False
run_name = time.strftime("%m%d-%H%M")
num_inputs = 6
ckpt_root = "./checkpoints/XVerse"
model.clear_modulation_adapters()
model.pipe.unload_lora_weights()
if not os.path.exists(ckpt_root):
print("Checkpoint root does not exist.")
modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
model.add_modulation_adapter(modulation_adapter)
if config["model"]["use_dit_lora"]:
load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)
vae_skip_iter = None
attn_skip_iter = 0
# 定义清空图像的函数,只返回四个 None
def clear_images():
return [None, ]*num_inputs
def det_seg_img(image, label):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
indices = list(range(len(instance_result_dict["instance_images"])))
ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
return ins
def crop_face_img(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
# image = resize_keep_aspect_ratio(image, 1024)
image = pad_to_square(image).resize((2048, 2048))
face_bbox = face_model.detect(
(pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
)[0]
face = image.crop(face_bbox)
return face
@spaces.GPU()
def vlm_img_caption(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
try:
caption = detector.detector.caption(image, "<CAPTION>").strip()
if caption.endswith("."):
caption = caption[:-1]
except Exception as e:
print(e)
caption = ""
caption = caption.lower()
return caption
def generate_random_string(length=4):
letters = string.ascii_letters # 包含大小写字母的字符串
result_str = ''.join(random.choice(letters) for i in range(length))
return result_str
def resize_keep_aspect_ratio(pil_image, target_size=1024):
H, W = pil_image.height, pil_image.width
target_area = target_size * target_size
current_area = H * W
scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area)
new_H = int(round(H * scaling_factor))
new_W = int(round(W * scaling_factor))
return pil_image.resize((new_W, new_H))
# 使用循环生成六个图像输入
images = []
captions = []
face_btns = []
det_btns = []
vlm_btns = []
accordions = []
idip_checkboxes = []
accordion_states = []
def open_accordion_on_example_selection(*args):
print("enter open_accordion_on_example_selection")
images = list(args[-18:-12])
outputs = []
for i, img in enumerate(images):
if img is not None:
print(f"open accordions {i}")
outputs.append(True)
else:
print(f"close accordions {i}")
outputs.append(False)
print(outputs)
return outputs
@spaces.GPU()
def generate_image(
prompt,
cond_size, target_height, target_width,
seed,
vae_skip_iter, control_weight_lambda,
double_attention, # 新增参数
single_attention, # 新增参数
ip_scale,
latent_sblora_scale_str, vae_lora_scale,
indexs, # 新增参数
*images_captions_faces, # Combine all unpacked arguments into one tuple
):
torch.cuda.empty_cache()
num_images = 1
# Determine the number of images, captions, and faces based on the indexs length
images = list(images_captions_faces[:num_inputs])
captions = list(images_captions_faces[num_inputs:2 * num_inputs])
idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
images = [images[i] for i in indexs]
captions = [captions[i] for i in indexs]
idips_checkboxes = [idips_checkboxes[i] for i in indexs]
print(f"Length of images: {len(images)}")
print(f"Length of captions: {len(captions)}")
print(f"Indexs: {indexs}")
print(f"Control weight lambda: {control_weight_lambda}")
if control_weight_lambda != "no":
parts = control_weight_lambda.split(',')
new_parts = []
for part in parts:
if ':' in part:
left, right = part.split(':')
values = right.split('/')
# 保存整体值
global_value = values[0]
id_value = values[1]
ip_value = values[2]
new_values = [global_value]
for is_id in idips_checkboxes:
if is_id:
new_values.append(id_value)
else:
new_values.append(ip_value)
new_part = f"{left}:{('/'.join(new_values))}"
new_parts.append(new_part)
else:
new_parts.append(part)
control_weight_lambda = ','.join(new_parts)
print(f"Control weight lambda: {control_weight_lambda}")
src_inputs = []
use_words = []
cur_run_time = time.strftime("%m%d-%H%M%S")
tmp_dir_root = f"tmp/gradio_demo/{run_name}"
temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
os.makedirs(temp_dir, exist_ok=True)
print(f"Temporary directory created: {temp_dir}")
for i, (image_path, caption) in enumerate(zip(images, captions)):
if image_path:
if caption.startswith("a ") or caption.startswith("A "):
word = caption[2:]
else:
word = caption
if f"ENT{i+1}" in prompt:
prompt = prompt.replace(f"ENT{i+1}", caption)
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
image.save(save_path)
input_image_path = save_path
src_inputs.append(
{
"image_path": input_image_path,
"caption": caption
}
)
use_words.append((i, word, word))
test_sample = dict(
input_images=[], position_delta=[0, -32],
prompt=prompt,
target_height=target_height,
target_width=target_width,
seed=seed,
cond_size=cond_size,
vae_skip_iter=vae_skip_iter,
lora_scale=ip_scale,
control_weight_lambda=control_weight_lambda,
latent_sblora_scale=latent_sblora_scale_str,
condition_sblora_scale=vae_lora_scale,
double_attention=double_attention,
single_attention=single_attention,
)
if len(src_inputs) > 0:
test_sample["modulation"] = [
dict(
type="adapter",
src_inputs=src_inputs,
use_words=use_words,
),
]
json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
assert single_attention == True
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
print(test_sample)
model.config["train"]["dataset"]["val_condition_size"] = cond_size
model.config["train"]["dataset"]["val_target_size"] = target_size
if control_weight_lambda == "no":
control_weight_lambda = None
if vae_skip_iter == "no":
vae_skip_iter = None
use_condition_sblora_control = True
use_latent_sblora_control = True
image = generate_from_test_sample(
test_sample, model.pipe, model.config,
num_images=num_images,
target_height=target_height,
target_width=target_width,
seed=seed,
store_attn_map=store_attn_map,
vae_skip_iter=vae_skip_iter, # 使用新的参数
control_weight_lambda=control_weight_lambda, # 传递新的参数
double_attention=double_attention, # 新增参数
single_attention=single_attention, # 新增参数
ip_scale=ip_scale,
use_latent_sblora_control=use_latent_sblora_control,
latent_sblora_scale=latent_sblora_scale_str,
use_condition_sblora_control=use_condition_sblora_control,
condition_sblora_scale=vae_lora_scale,
)
if isinstance(image, list):
num_cols = 2
num_rows = int(math.ceil(num_images / num_cols))
image = image_grid(image, num_rows, num_cols)
save_path = f"{temp_dir}/tmp_result.png"
image.save(save_path)
return image
def create_image_input(index, open=True, indexs_state=None):
accordion_state = gr.State(open)
with gr.Column():
with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion:
image = gr.Image(type="filepath", label=f"Image {index + 1}")
caption = gr.Textbox(label=f"Caption {index + 1}", value="")
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
with gr.Row():
vlm_btn = gr.Button("Auto Caption")
det_btn = gr.Button("Det & Seg")
face_btn = gr.Button("Crop Face")
accordion.expand(
inputs=[indexs_state],
fn = lambda x: update_inputs(True, index, x),
outputs=[indexs_state, accordion_state],
)
accordion.collapse(
inputs=[indexs_state],
fn = lambda x: update_inputs(False, index, x),
outputs=[indexs_state, accordion_state],
)
return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox
def merge_instances(orig_img, indices, ins_bboxes, ins_images):
orig_image_width, orig_image_height = orig_img.width, orig_img.height
final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
bboxes = []
for i in indices:
bbox = np.array(ins_bboxes[i], dtype=int).tolist()
bboxes.append(bbox)
img = cv2pil(ins_images[i])
mask = (np.array(img)[..., :3] != 255).any(axis=-1)
mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
final_img.paste(img, (bbox[0], bbox[1]), mask)
bbox = merge_bboxes(bboxes)
img = final_img.crop(bbox)
return img, bbox
def change_accordion(at: bool, index: int, state: list):
print(at, state)
indexs = state
if at:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return gr.Accordion(open=at), indexs
def update_inputs(is_open, index, state: list):
indexs = state
if is_open:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return indexs, is_open
from huggingface_hub import snapshot_download
# FLUX.1-dev
snapshot_download(
repo_id="black-forest-labs/FLUX.1-dev",
local_dir="./FLUX.1-dev",
local_dir_use_symlinks=False
)
# Florence-2-large
snapshot_download(
repo_id="microsoft/Florence-2-large",
local_dir="./Florence-2-large",
local_dir_use_symlinks=False
)
# CLIP ViT Large
snapshot_download(
repo_id="openai/clip-vit-large-patch14",
local_dir="./clip-vit-large-patch14",
local_dir_use_symlinks=False
)
# DINO ViT-s16
snapshot_download(
repo_id="facebook/dino-vits16",
local_dir="./dino-vits16",
local_dir_use_symlinks=False
)
# mPLUG Visual Question Answering
snapshot_download(
repo_id="xingjianleng/mplug_visual-question-answering_coco_large_en",
local_dir="./mplug_visual-question-answering_coco_large_en",
local_dir_use_symlinks=False
)
# XVerse
snapshot_download(
repo_id="ByteDance/XVerse",
local_dir="./XVerse",
local_dir_use_symlinks=False
)
os.environ["FLORENCE2_MODEL_PATH"] = "./checkpoints/Florence-2-large"
os.environ["SAM2_MODEL_PATH"] = "./checkpoints/sam2.1_hiera_large.pt"
os.environ["FACE_ID_MODEL_PATH"] = "./checkpoints/model_ir_se50.pth"
os.environ["CLIP_MODEL_PATH"] = "./checkpoints/clip-vit-large-patch14"
os.environ["FLUX_MODEL_PATH"] = "./checkpoints/FLUX.1-dev"
os.environ["DPG_VQA_MODEL_PATH"] = "./checkpoints/mplug_visual-question-answering_coco_large_en"
os.environ["DINO_MODEL_PATH"] = "./checkpoints/dino-vits16"
with gr.Blocks() as demo:
indexs_state = gr.State([0, 1]) # 添加状态来存储 indexs
gr.Markdown("### XVerse Demo")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="")
# 使用 Row 和 Column 来布局四个图像和描述
with gr.Row():
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
with gr.Row():
# 修改 weight_id_ip_str 为两个 Slider
weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
with gr.Row():
# 修改 ip_scale_str 为 Slider,并添加 Textbox 显示转换后的格式
ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
with gr.Row():
# 修改 vae_skip_iter 为两个 Slider
vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
with gr.Row():
weight_id_ip_str = gr.Textbox(
value="0-1:1/3/5",
label="weight_id_ip_str",
interactive=False, visible=False
)
weight_id.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
weight_ip.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
vae_skip_iter = gr.Textbox(
value="0-0.05:1,0.8-1:1",
label="vae_skip_iter",
interactive=False, visible=False
)
vae_skip_iter_s1.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
vae_skip_iter_s2.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
with gr.Row():
db_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="db_latent_lora_scale_str",
interactive=False, visible=False
)
sb_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="sb_latent_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale_str = gr.Textbox(
value="0-1:1.3",
label="vae_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale.change(
lambda s: f"0-1:{s}",
inputs=vae_lora_scale,
outputs=vae_lora_scale_str
)
ip_scale_str.change(
lambda s: [f"0-1:{s}", f"0-1:{s}"],
inputs=ip_scale_str,
outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
)
with gr.Row():
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
clear_btn = gr.Button("清空输入图像")
with gr.Row():
for i in range(num_inputs):
image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state)
images.append(image)
idip_checkboxes.append(id_ip_checkbox)
captions.append(caption)
face_btns.append(face_btn)
det_btns.append(det_btn)
vlm_btns.append(vlm_btn)
accordion_states.append(accordion_state)
accordions.append(accordion)
with gr.Column():
output = gr.Image(label="生成的图像")
seed = gr.Number(value=42, label="Seed", info="")
gen_btn = gr.Button("生成图像")
gr.Markdown("### Examples")
gen_btn.click(
generate_image,
inputs=[
prompt, cond_size, target_height, target_width, seed,
vae_skip_iter, weight_id_ip_str,
double_attention, single_attention,
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
indexs_state, # 传递 indexs 状态
*images,
*captions,
*idip_checkboxes,
],
outputs=output
)
# 修改清空函数的输出参数
clear_btn.click(clear_images, outputs=images)
# 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件
for i in range(num_inputs):
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
accordion_states[i].change(fn=lambda x, state, index=i: change_accordion(x, index, state), inputs=[accordion_states[i], indexs_state], outputs=[accordions[i], indexs_state])
examples = gr.Examples(
examples=[
[
"ENT1 wearing a tiny hat",
42, 256, 768, 768,
3, 5,
0.85, 1.3,
0.05, 0.8,
"sample/hamster.jpg", None, None, None, None, None,
"a hamster", None, None, None, None, None,
False, False, False, False, False, False
],
[
"ENT1 in a red dress is smiling",
42, 256, 768, 768,
3, 5,
0.85, 1.3,
0.05, 0.8,
"sample/woman.jpg", None, None, None, None, None,
"a woman", None, None, None, None, None,
True, False, False, False, False, False
],
[
"ENT1 and ENT2 standing together in a park.",
42, 256, 768, 768,
2, 5,
0.85, 1.3,
0.05, 0.8,
"sample/woman.jpg", "sample/girl.jpg", None, None, None, None,
"a woman", "a girl", None, None, None, None,
True, True, False, False, False, False
],
[
"ENT1, ENT2, and ENT3 standing together in a park.",
42, 256, 768, 768,
2.5, 5,
0.8, 1.2,
0.05, 0.8,
"sample/woman.jpg", "sample/girl.jpg", "sample/old_man.jpg", None, None, None,
"a woman", "a girl", "an old man", None, None, None,
True, True, True, False, False, False
],
],
inputs=[
prompt, seed,
cond_size,
target_height,
target_width,
weight_id,
weight_ip,
ip_scale_str,
vae_lora_scale,
vae_skip_iter_s1,
vae_skip_iter_s2,
*images,
*captions,
*idip_checkboxes
],
outputs=accordion_states,
fn=open_accordion_on_example_selection,
run_on_click=True
)
demo.queue().launch(share=True)