XVerse / app.py
alexnasa's picture
Update app.py
ba1b0fc verified
raw
history blame
20.8 kB
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# STEP 1: Very first thing in the file: force spawn
import multiprocessing as mp
mp.set_start_method("spawn", force=True)
import spaces
import tempfile
from PIL import Image
import gradio as gr
import string
import random, time, math
import os
os.environ["NCCL_P2P_DISABLE"]="1"
os.environ["NCCL_IB_DISABLE"]="1"
import src.flux.generate
# from src.flux.generate import generate_from_test_sample, seed_everything
# from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, load_dit_lora
# from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
# from eval.tools.face_id import FaceID
# from eval.tools.florence_sam import ObjectDetector
# import shutil
# import yaml
# import numpy as np
# from huggingface_hub import snapshot_download, hf_hub_download
import torch
# # FLUX.1-dev
# snapshot_download(
# repo_id="black-forest-labs/FLUX.1-dev",
# local_dir="./checkpoints/FLUX.1-dev",
# local_dir_use_symlinks=False
# )
# # Florence-2-large
# snapshot_download(
# repo_id="microsoft/Florence-2-large",
# local_dir="./checkpoints/Florence-2-large",
# local_dir_use_symlinks=False
# )
# # CLIP ViT Large
# snapshot_download(
# repo_id="openai/clip-vit-large-patch14",
# local_dir="./checkpoints/clip-vit-large-patch14",
# local_dir_use_symlinks=False
# )
# # DINO ViT-s16
# snapshot_download(
# repo_id="facebook/dino-vits16",
# local_dir="./checkpoints/dino-vits16",
# local_dir_use_symlinks=False
# )
# # mPLUG Visual Question Answering
# snapshot_download(
# repo_id="xingjianleng/mplug_visual-question-answering_coco_large_en",
# local_dir="./checkpoints/mplug_visual-question-answering_coco_large_en",
# local_dir_use_symlinks=False
# )
# # XVerse
# snapshot_download(
# repo_id="ByteDance/XVerse",
# local_dir="./checkpoints/XVerse",
# local_dir_use_symlinks=False
# )
# hf_hub_download(
# repo_id="facebook/sam2.1-hiera-large",
# local_dir="./checkpoints/",
# filename="sam2.1_hiera_large.pt",
# )
# os.environ["FLORENCE2_MODEL_PATH"] = "./checkpoints/Florence-2-large"
# os.environ["SAM2_MODEL_PATH"] = "./checkpoints/sam2.1_hiera_large.pt"
# os.environ["FACE_ID_MODEL_PATH"] = "./checkpoints/model_ir_se50.pth"
# os.environ["CLIP_MODEL_PATH"] = "./checkpoints/clip-vit-large-patch14"
# os.environ["FLUX_MODEL_PATH"] = "./checkpoints/FLUX.1-dev"
# os.environ["DPG_VQA_MODEL_PATH"] = "./checkpoints/mplug_visual-question-answering_coco_large_en"
# os.environ["DINO_MODEL_PATH"] = "./checkpoints/dino-vits16"
# dtype = torch.bfloat16
# device = "cuda"
# config_path = "train/config/XVerse_config_demo.yaml"
# config = config_train = get_train_config(config_path)
# # config["model"]["dit_quant"] = "int8-quanto"
# config["model"]["use_dit_lora"] = False
# model = CustomFluxPipeline(
# config, device, torch_dtype=dtype,
# )
# model.pipe.set_progress_bar_config(leave=False)
# face_model = FaceID(device)
# detector = ObjectDetector(device)
# config = get_train_config(config_path)
# model.config = config
# run_mode = "mod_only" # orig_only, mod_only, both
# store_attn_map = False
# run_name = time.strftime("%m%d-%H%M")
# num_inputs = 6
# ckpt_root = "./checkpoints/XVerse"
# model.clear_modulation_adapters()
# model.pipe.unload_lora_weights()
# if not os.path.exists(ckpt_root):
# print("Checkpoint root does not exist.")
# modulation_adapter = load_modulation_adapter(model, config, dtype, device, f"{ckpt_root}/modulation_adapter", is_training=False)
# model.add_modulation_adapter(modulation_adapter)
# if config["model"]["use_dit_lora"]:
# load_dit_lora(model, model.pipe, config, dtype, device, f"{ckpt_root}", is_training=False)
# vae_skip_iter = None
# attn_skip_iter = 0
# def clear_images():
# return [None, ]*num_inputs
@spaces.GPU()
def det_seg_img(image, label):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
indices = list(range(len(instance_result_dict["instance_images"])))
ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
return ins
@spaces.GPU()
def crop_face_img(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
# image = resize_keep_aspect_ratio(image, 1024)
image = pad_to_square(image).resize((2048, 2048))
face_bbox = face_model.detect(
(pil2tensor(image).unsqueeze(0) * 255).to(torch.uint8).to(device), 1.4
)[0]
face = image.crop(face_bbox)
return face
@spaces.GPU()
def vlm_img_caption(image):
if isinstance(image, str):
image = Image.open(image).convert("RGB")
try:
caption = detector.detector.caption(image, "<CAPTION>").strip()
if caption.endswith("."):
caption = caption[:-1]
except Exception as e:
print(e)
caption = ""
caption = caption.lower()
return caption
def generate_random_string(length=4):
letters = string.ascii_letters # 包含大小写字母的字符串
result_str = ''.join(random.choice(letters) for i in range(length))
return result_str
def resize_keep_aspect_ratio(pil_image, target_size=1024):
H, W = pil_image.height, pil_image.width
target_area = target_size * target_size
current_area = H * W
scaling_factor = (target_area / current_area) ** 0.5 # sqrt(target_area / current_area)
new_H = int(round(H * scaling_factor))
new_W = int(round(W * scaling_factor))
return pil_image.resize((new_W, new_H))
@spaces.GPU()
def generate_image(
prompt,
cond_size, target_height, target_width,
seed,
vae_skip_iter, control_weight_lambda,
double_attention, # 新增参数
single_attention, # 新增参数
ip_scale,
latent_sblora_scale_str, vae_lora_scale,
indexs, # 新增参数
# *images_captions_faces, # Combine all unpacked arguments into one tuple
):
# torch.cuda.empty_cache()
# num_images = 1
# # Determine the number of images, captions, and faces based on the indexs length
# images = list(images_captions_faces[:num_inputs])
# captions = list(images_captions_faces[num_inputs:2 * num_inputs])
# idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
# images = [images[i] for i in indexs]
# captions = [captions[i] for i in indexs]
# idips_checkboxes = [idips_checkboxes[i] for i in indexs]
# print(f"Length of images: {len(images)}")
# print(f"Length of captions: {len(captions)}")
# print(f"Indexs: {indexs}")
# print(f"Control weight lambda: {control_weight_lambda}")
# if control_weight_lambda != "no":
# parts = control_weight_lambda.split(',')
# new_parts = []
# for part in parts:
# if ':' in part:
# left, right = part.split(':')
# values = right.split('/')
# # 保存整体值
# global_value = values[0]
# id_value = values[1]
# ip_value = values[2]
# new_values = [global_value]
# for is_id in idips_checkboxes:
# if is_id:
# new_values.append(id_value)
# else:
# new_values.append(ip_value)
# new_part = f"{left}:{('/'.join(new_values))}"
# new_parts.append(new_part)
# else:
# new_parts.append(part)
# control_weight_lambda = ','.join(new_parts)
# print(f"Control weight lambda: {control_weight_lambda}")
# src_inputs = []
# use_words = []
# cur_run_time = time.strftime("%m%d-%H%M%S")
# tmp_dir_root = f"tmp/gradio_demo/{run_name}"
# temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
# os.makedirs(temp_dir, exist_ok=True)
# print(f"Temporary directory created: {temp_dir}")
# for i, (image_path, caption) in enumerate(zip(images, captions)):
# if image_path:
# if caption.startswith("a ") or caption.startswith("A "):
# word = caption[2:]
# else:
# word = caption
# if f"ENT{i+1}" in prompt:
# prompt = prompt.replace(f"ENT{i+1}", caption)
# image = resize_keep_aspect_ratio(Image.open(image_path), 768)
# save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
# image.save(save_path)
# input_image_path = save_path
# src_inputs.append(
# {
# "image_path": input_image_path,
# "caption": caption
# }
# )
# use_words.append((i, word, word))
# test_sample = dict(
# input_images=[], position_delta=[0, -32],
# prompt=prompt,
# target_height=target_height,
# target_width=target_width,
# seed=seed,
# cond_size=cond_size,
# vae_skip_iter=vae_skip_iter,
# lora_scale=ip_scale,
# control_weight_lambda=control_weight_lambda,
# latent_sblora_scale=latent_sblora_scale_str,
# condition_sblora_scale=vae_lora_scale,
# double_attention=double_attention,
# single_attention=single_attention,
# )
# if len(src_inputs) > 0:
# test_sample["modulation"] = [
# dict(
# type="adapter",
# src_inputs=src_inputs,
# use_words=use_words,
# ),
# ]
# json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
# assert single_attention == True
# target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
# print(test_sample)
# model.config["train"]["dataset"]["val_condition_size"] = cond_size
# model.config["train"]["dataset"]["val_target_size"] = target_size
# if control_weight_lambda == "no":
# control_weight_lambda = None
# if vae_skip_iter == "no":
# vae_skip_iter = None
# use_condition_sblora_control = True
# use_latent_sblora_control = True
# image = generate_from_test_sample(
# test_sample, model.pipe, model.config,
# num_images=num_images,
# target_height=target_height,
# target_width=target_width,
# seed=seed,
# store_attn_map=store_attn_map,
# vae_skip_iter=vae_skip_iter, # 使用新的参数
# control_weight_lambda=control_weight_lambda, # 传递新的参数
# double_attention=double_attention, # 新增参数
# single_attention=single_attention, # 新增参数
# ip_scale=ip_scale,
# use_latent_sblora_control=use_latent_sblora_control,
# latent_sblora_scale=latent_sblora_scale_str,
# use_condition_sblora_control=use_condition_sblora_control,
# condition_sblora_scale=vae_lora_scale,
# )
# if isinstance(image, list):
# num_cols = 2
# num_rows = int(math.ceil(num_images / num_cols))
# image = image_grid(image, num_rows, num_cols)
# save_path = f"{temp_dir}/tmp_result.png"
# image.save(save_path)
# return image
return None
def merge_instances(orig_img, indices, ins_bboxes, ins_images):
orig_image_width, orig_image_height = orig_img.width, orig_img.height
final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
bboxes = []
for i in indices:
bbox = np.array(ins_bboxes[i], dtype=int).tolist()
bboxes.append(bbox)
img = cv2pil(ins_images[i])
mask = (np.array(img)[..., :3] != 255).any(axis=-1)
mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
final_img.paste(img, (bbox[0], bbox[1]), mask)
bbox = merge_bboxes(bboxes)
img = final_img.crop(bbox)
return img, bbox
def change_accordion(at: bool, index: int, state: list):
print(at, state)
indexs = state
if at:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return gr.Accordion(open=at), indexs
def update_inputs(is_open, index, state: list):
indexs = state
if is_open:
if index not in indexs:
indexs.append(index)
else:
if index in indexs:
indexs.remove(index)
# 确保 indexs 是有序的
indexs.sort()
print(indexs)
return indexs, is_open
if __name__ == "__main__":
with gr.Blocks() as demo:
indexs_state = gr.State([0, 1]) # 添加状态来存储 indexs
gr.Markdown("### XVerse Demo")
with gr.Row():
with gr.Column():
prompt = gr.Textbox(label="Prompt", value="")
with gr.Accordion("Open for More!", open=False):
with gr.Row():
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
target_width = gr.Slider(512, 1024, step=128, value=768, label="Generated Width", info="")
cond_size = gr.Slider(256, 384, step=128, value=256, label="Condition Size", info="")
with gr.Row():
weight_id = gr.Slider(0.1, 5, step=0.1, value=3, label="weight_id")
weight_ip = gr.Slider(0.1, 5, step=0.1, value=5, label="weight_ip")
with gr.Row():
ip_scale_str = gr.Slider(0.5, 1.5, step=0.01, value=0.85, label="latent_lora_scale")
vae_lora_scale = gr.Slider(0.5, 1.5, step=0.01, value=1.3, label="vae_lora_scale")
with gr.Row():
vae_skip_iter_s1 = gr.Slider(0, 1, step=0.01, value=0.05, label="vae_skip_iter_before")
vae_skip_iter_s2 = gr.Slider(0, 1, step=0.01, value=0.8, label="vae_skip_iter_after")
with gr.Row():
weight_id_ip_str = gr.Textbox(
value="0-1:1/3/5",
label="weight_id_ip_str",
interactive=False, visible=False
)
weight_id.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
weight_ip.change(
lambda s1, s2: f"0-1:1/{s1}/{s2}",
inputs=[weight_id, weight_ip],
outputs=weight_id_ip_str
)
vae_skip_iter = gr.Textbox(
value="0-0.05:1,0.8-1:1",
label="vae_skip_iter",
interactive=False, visible=False
)
vae_skip_iter_s1.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
vae_skip_iter_s2.change(
lambda s1, s2: f"0-{s1}:1,{s2}-1:1",
inputs=[vae_skip_iter_s1, vae_skip_iter_s2],
outputs=vae_skip_iter
)
with gr.Row():
db_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="db_latent_lora_scale_str",
interactive=False, visible=False
)
sb_latent_lora_scale_str = gr.Textbox(
value="0-1:0.85",
label="sb_latent_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale_str = gr.Textbox(
value="0-1:1.3",
label="vae_lora_scale_str",
interactive=False, visible=False
)
vae_lora_scale.change(
lambda s: f"0-1:{s}",
inputs=vae_lora_scale,
outputs=vae_lora_scale_str
)
ip_scale_str.change(
lambda s: [f"0-1:{s}", f"0-1:{s}"],
inputs=ip_scale_str,
outputs=[db_latent_lora_scale_str, sb_latent_lora_scale_str]
)
with gr.Row():
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
clear_btn = gr.Button("清空输入图像")
with gr.Row():
with gr.Column():
image_1 = gr.Image(type="filepath", label=f"Image 1")
caption_1 = gr.Textbox(label=f"Caption 1", value="")
id_ip_checkbox_1 = gr.Checkbox(value=False, label=f"ID or not 1", visible=True)
with gr.Row():
vlm_btn_1 = gr.Button("Auto Caption")
det_btn_1 = gr.Button("Det & Seg")
face_btn_1 = gr.Button("Crop Face")
with gr.Column():
image_2 = gr.Image(type="filepath", label=f"Image 2")
caption_2 = gr.Textbox(label=f"Caption 2", value="")
id_ip_checkbox_2 = gr.Checkbox(value=False, label=f"ID or not 2", visible=True)
with gr.Row():
vlm_btn_2 = gr.Button("Auto Caption")
det_btn_2 = gr.Button("Det & Seg")
face_btn_2 = gr.Button("Crop Face")
with gr.Column():
output = gr.Image(label="生成的图像")
seed = gr.Number(value=42, label="Seed", info="")
gen_btn = gr.Button("生成图像")
gr.Markdown("### Examples")
gen_btn.click(
generate_image,
inputs=[
prompt, cond_size, target_height, target_width, seed,
vae_skip_iter, weight_id_ip_str,
double_attention, single_attention,
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
indexs_state, # 传递 indexs 状态
# *images,
# *captions,
# *idip_checkboxes,
],
outputs=output
)
# # 修改清空函数的输出参数
# clear_btn.click(clear_images, outputs=images)
face_btn_1.click(crop_face_img, inputs=[image_1], outputs=[image_1])
det_btn_1.click(det_seg_img, inputs=[image_1, caption_1], outputs=[image_1])
vlm_btn_1.click(vlm_img_caption, inputs=[image_1], outputs=[caption_1])
face_btn_2.click(crop_face_img, inputs=[image_2], outputs=[image_2])
det_btn_2.click(det_seg_img, inputs=[image_2, caption_2], outputs=[image_2])
vlm_btn_2.click(vlm_img_caption, inputs=[image_2], outputs=[caption_2])
demo.queue()
demo.launch()