XVerse / train /config /XVerse_config_demo.yaml
alexnasa's picture
Update train/config/XVerse_config_demo.yaml
8ff0625 verified
dtype: "bfloat16"
model:
text_cond_attn: false
add_cond_attn: false
union_cond_attn: true
double_use_condition: false
single_use_condition: true
cond_cond_cross_attn: true
train_partial_text_lora: false # dblock txt lora
train_partial_text_lora_layers: "qkv_toout"
train_partial_latent_lora: false # dblock latent lora
train_partial_latent_lora_layers: "qkv_toout"
train_partial_lora: true
train_partial_lora_layers: "qkv_projout"
use_dit_lora: true
latent_lora: false
text_lora: true
sblock_lora: true
use_pretrained_dit_lora: true
use_condition_dblock_lora: false
use_condition_sblock_lora: false
use_pretrained_condition_lora: false
freeze_mod_adapter: true
freeze_txt_lora: true
freeze_single_lora: false
use_pretrained_dit_single_lora: true
pos_offset_type: "diagonal"
modulation:
use_clip: true
use_vae: false
use_dit: false
use_text_mod: true
use_img_mod: false
pass_vae: true
max_text_len: 128
adapter_type: "clip_adapter"
adapter_layers: 3
adapter_width: 3072
out_dim: 3072
use_perblock_adapter: true
per_block_adapter_layers: 3
per_block_adapter_width: 3072
per_block_adapter_single_blocks: 0
eos_exclude: false
dit_lora_config:
r: 128
lora_alpha: 128
init_lora_weights: "gaussian"
target_modules: "(.*x_embedder|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1_context\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.add_q_proj|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.add_k_proj|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.add_v_proj|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_add_out|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff_context\\.net\\.2|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2|.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)"
# dit_quant: "int8-quanto"
train:
dataset:
condition_pad_to: "square"
val_condition_size: 256
val_target_size: 512