alexnasa commited on
Commit
4479f79
·
verified ·
1 Parent(s): 5c343e3

Upload 113 files

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +2 -0
  2. LICENCE +201 -0
  3. README.md +122 -12
  4. assets/ReadMe.md +44 -0
  5. assets/XVerseBench/.DS_Store +0 -0
  6. assets/XVerseBench/human/00_boy.jpg +0 -0
  7. assets/XVerseBench/human/01_man.jpg +0 -0
  8. assets/XVerseBench/human/02_man.jpg +0 -0
  9. assets/XVerseBench/human/03_woman.jpg +0 -0
  10. assets/XVerseBench/human/04_little girl.jpg +0 -0
  11. assets/XVerseBench/human/05_man.jpg +0 -0
  12. assets/XVerseBench/human/06_man.jpg +0 -0
  13. assets/XVerseBench/human/07_man.jpg +0 -0
  14. assets/XVerseBench/human/08_man.jpg +0 -0
  15. assets/XVerseBench/human/09_woman.jpg +0 -0
  16. assets/XVerseBench/human/10_man.jpg +0 -0
  17. assets/XVerseBench/human/11_man.jpg +0 -0
  18. assets/XVerseBench/human/12_woman.jpg +0 -0
  19. assets/XVerseBench/human/13_woman.jpg +0 -0
  20. assets/XVerseBench/human/14_boy.jpg +0 -0
  21. assets/XVerseBench/human/15_woman.jpg +0 -0
  22. assets/XVerseBench/human/16_old man.jpg +0 -0
  23. assets/XVerseBench/human/17_man.jpg +0 -0
  24. assets/XVerseBench/human/18_man.jpg +0 -0
  25. assets/XVerseBench/human/19_girl.jpg +0 -0
  26. assets/crop_faces.py +62 -0
  27. assets/rename.py +76 -0
  28. assets/segmentation.py +76 -0
  29. eval/eval_scripts/run_eval_multi.sh +48 -0
  30. eval/eval_scripts/run_eval_single.sh +48 -0
  31. eval/grounded_sam/florence2/config.json +85 -0
  32. eval/grounded_sam/florence2/configuration_florence2.py +340 -0
  33. eval/grounded_sam/florence2/generation_config.json +4 -0
  34. eval/grounded_sam/florence2/modeling_florence2.py +0 -0
  35. eval/grounded_sam/florence2/preprocessor_config.json +39 -0
  36. eval/grounded_sam/florence2/processing_florence2.py +1147 -0
  37. eval/grounded_sam/florence2/tokenizer.json +0 -0
  38. eval/grounded_sam/florence2/tokenizer_config.json +4 -0
  39. eval/grounded_sam/florence2/vocab.json +0 -0
  40. eval/grounded_sam/grounded_sam2_florence2_autolabel_pipeline.py +361 -0
  41. eval/grounded_sam/sam2/__init__.py +11 -0
  42. eval/grounded_sam/sam2/automatic_mask_generator.py +454 -0
  43. eval/grounded_sam/sam2/build_sam.py +172 -0
  44. eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml +116 -0
  45. eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_l.yaml +120 -0
  46. eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_s.yaml +119 -0
  47. eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_t.yaml +121 -0
  48. eval/grounded_sam/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml +339 -0
  49. eval/grounded_sam/sam2/configs/sam2/sam2_hiera_b+.yaml +113 -0
  50. eval/grounded_sam/sam2/configs/sam2/sam2_hiera_l.yaml +117 -0
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ sample/first_page.png filter=lfs diff=lfs merge=lfs -text
37
+ sample/XVerseBench.png filter=lfs diff=lfs merge=lfs -text
LICENCE ADDED
@@ -0,0 +1,201 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
README.md CHANGED
@@ -1,12 +1,122 @@
1
- ---
2
- title: XVerse
3
- emoji: 🌍
4
- colorFrom: green
5
- colorTo: green
6
- sdk: gradio
7
- sdk_version: 5.35.0
8
- app_file: app.py
9
- pinned: false
10
- ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation
2
+
3
+ <p align="center">
4
+ <a href="https://arxiv.org/abs/2506.21416">
5
+ <img alt="Build" src="https://img.shields.io/badge/arXiv%20paper-2506.21416-b31b1b.svg">
6
+ </a>
7
+ <a href="https://bytedance.github.io/XVerse/">
8
+ <img alt="Project Page" src="https://img.shields.io/badge/Project-Page-blue">
9
+ </a>
10
+ <a href="https://github.com/bytedance/XVerse/tree/main/assets">
11
+ <img alt="Build" src="https://img.shields.io/badge/XVerseBench-Dataset-green">
12
+ </a>
13
+ <a href="https://huggingface.co/ByteDance/XVerse">
14
+ <img alt="Build" src="https://img.shields.io/badge/🤗-HF%20Model-yellow">
15
+ </a>
16
+ </p>
17
+
18
+ ## 🔥 News
19
+ - **2025.6.26**: The code has been released!
20
+
21
+ ![XVerse's capability in single/multi-subject personalization and semantic attribute control (pose, style, lighting)](sample/first_page.png)
22
+
23
+ ## 📖 Introduction
24
+
25
+ **XVerse** introduces a novel approach to multi-subject image synthesis, offering **precise and independent control over individual subjects** without disrupting the overall image latents or features. We achieve this by transforming reference images into offsets for token-specific text-stream modulation.
26
+
27
+ This innovation enables high-fidelity, editable image generation where you can robustly control both **individual subject characteristics** (identity) and their **semantic attributes**. XVerse significantly enhances capabilities for personalized and complex scene generation.
28
+
29
+ ## ⚡️ Quick Start
30
+
31
+ ### Requirements and Installation
32
+
33
+ First, install the necessary dependencies:
34
+
35
+ ```bash
36
+ # Create a conda environment named XVerse with Python version 3.10.16
37
+ conda create -n XVerse python=3.10.16 -y
38
+ # Activate the XVerse environment
39
+ conda activate XVerse
40
+ # Use pip to install the dependencies specified in requirements.txt
41
+ pip install -r requirements.txt
42
+ ```
43
+
44
+ Next, download the required checkpoints:
45
+ ```bash
46
+ cd checkpoints
47
+ bash ./download_ckpts.sh
48
+ cd ..
49
+ ```
50
+ **Important**: You'll also need to download the face recognition model `model_ir_se50.pth` from [InsightFace_Pytorch](https://github.com/TreB1eN/InsightFace_Pytorch) and place it directly into the `./checkpoints/` folder.
51
+
52
+ ### Local Gradio Demo
53
+
54
+ To run the interactive Gradio demo locally, execute the following command:
55
+ ```bash
56
+ bash run_demo.sh
57
+ ```
58
+
59
+ #### Input Settings Explained
60
+ The Gradio demo provides several parameters to control your image generation process:
61
+ * **Prompt**: The textual description guiding the image generation.
62
+ * **Generated Height/Width**: Use the sliders to set the shape of the output image.
63
+ * **Weight_id/ip**: Adjust these weight parameters. Higher values generally lead to better subject consistency but might slightly impact the naturalness of the generated image.
64
+ * **latent_lora_scale and vae_lora_scale**: Control the LoRA scale. Similar to Weight_id/ip, larger LoRA values can improve subject consistency but may reduce image naturalness.
65
+ * **vae_skip_iter_before and vae_skip_iter_after**: Configure VAE skip iterations. Skipping more steps can result in better naturalness but might compromise subject consistency.
66
+
67
+ #### Input Images
68
+
69
+ The demo provides detailed control over your input images:
70
+
71
+ * **Expand Panel**: Click "Input Image X" to reveal the options for each image.
72
+ * **Upload Image**: Click "Image X" to upload your desired reference image.
73
+ * **Image Description**: Enter a description in the "Caption X" input box. You can also click "Auto Caption" to generate a description automatically.
74
+ * **Detection & Segmentation**: Click "Det & Seg" to perform detection and segmentation on the uploaded image.
75
+ * **Crop Face**: Use "Crop Face" to automatically crop the face from the image.
76
+ * **ID Checkbox**: Check or uncheck "ID or not" to determine whether to use ID-related weights for that specific input image.
77
+
78
+ > **⚠️ Important Usage Notes:**
79
+ >
80
+ > * **Prompt Construction**: The main text prompt **MUST** include the exact text you entered in the `Image Description` field for each active image. **Generation will fail if this description is missing from the prompt.**
81
+ > * *Example*: If you upload two images and set their descriptions as "a man with red hair" (for Image 1) and "a woman with blue eyes" (for Image 2), your main prompt might be: "A `a man with red hair` walking beside `a woman with blue eyes` in a park."
82
+ > * You can then write your main prompt simply as: "`ENT1` walking beside `ENT2` in a park." The code will **automatically replace** these placeholders with the full description text before generation.
83
+ > * **Active Images**: Only images in **expanded** (un-collapsed) panels will be fed into the model. Collapsed image panels are ignored.
84
+
85
+ ## Inference with XVerseBench
86
+
87
+ ![XVerseBench](sample/XVerseBench.png)
88
+
89
+ First, please download XVerseBench according to the contents in the `assets` folder. Then, when running inference, please execute the following command:
90
+ ```bash
91
+ bash ./eval/eval_scripts/run_eval.sh
92
+ ```
93
+ The script will automatically evaluate the model on the XVerseBench dataset and save the results in the `./results` folder.
94
+
95
+ ## 📌 ToDo
96
+
97
+ - [x] Release github repo.
98
+ - [x] Release arXiv paper.
99
+ - [x] Release model checkpoints.
100
+ - [x] Release inference data: XVerseBench.
101
+ - [x] Release inference code for XVerseBench.
102
+ - [x] Release inference code for gradio demo.
103
+ - [ ] Release inference code for single sample.
104
+ - [ ] Release huggingface space demo.
105
+ - [ ] Release Benchmark Leaderboard.
106
+
107
+ ## License
108
+
109
+ The code in this project is licensed under Apache 2.0; the dataset is licensed under CC0, subject to the intellctual property owned by Bytedance. Meanwhile, the dataset is adapted from [dreambench++](https://dreambenchplus.github.io/), you should also comply with the license of dreambench++.
110
+
111
+ ## Citation
112
+ If XVerse is helpful, please help to ⭐ the repo.
113
+
114
+ If you find this project useful for your research, please consider citing our paper:
115
+ ```bibtex
116
+ @article{chen2025xverse,
117
+ title={XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation},
118
+ author={Chen, Bowen and Zhao, Mengyi and Sun, Haomiao and Chen, Li and Wang, Xu and Du, Kang and Wu, Xinglong},
119
+ journal={arXiv preprint arXiv:2506.21416},
120
+ year={2025}
121
+ }
122
+ ```
assets/ReadMe.md ADDED
@@ -0,0 +1,44 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Install of XVerseBench
2
+
3
+ Existing controlled image generation benchmarks often focus on either maintaining identity or object appearance consistency, rarely encompassing datasets that rigorously test both aspects. To comprehensively assess the models' single-subject and multi-subject conditional generation and editing capabilities, we constructed a new benchmark by merging and curating data from DreamBench++ and some generated human images.
4
+
5
+ Our resulting benchmark XVerseBench comprises 20 distinct human identities, 74 unique objects, and 45 different animal species/individuals. To thoroughly evaluate model effectiveness in subject-driven generation tasks, we developed test sets specifically for single-subject, dual-subject, and triple-subject control scenarios. This benchmark includes 300 unique test prompts covering diverse combinations of humans, objects, and animals.
6
+
7
+ <p align="center">
8
+ <img src="../sample/XVerseBench.png" alt="XVerseBench">
9
+ </p>
10
+ <p align="center"><strong>Figure 1. XVerseBench</strong></p>
11
+
12
+ The above figure shows more detail information and samples for each categories. For evaluation, we employ a suite of metrics to quantify different aspects of generation quality and control fidelity: including DPG score to assess the model's editing capability, Face ID similarity and DINOv2 similarity to assess the model's preservation of human identity and objects, and Aesthetic Score to measure to evaluate the aesthetics of the generated image. XVerseBench aims to provide a more challenging and holistic evaluation framework for state-of-the-art multi-subject controllable text-to-image generation models.
13
+
14
+ ## Usage
15
+
16
+ 1. Download **DreamBench++** from [https://dreambenchplus.github.io/](https://dreambenchplus.github.io/) and place it into the `data/DreamBench++` directory.
17
+ 2. Run the following command to rename and segementate the images:
18
+ ```bash
19
+ python assets/rename.py
20
+ python assets/segmentation_sample.py
21
+ ```
22
+
23
+ ## Citation
24
+ If XVerseBench is helpful, please help to ⭐ the repo.
25
+
26
+ If you find this project useful for your research, please consider citing our paper:
27
+ ```bibtex
28
+ @article{chen2025xverse,
29
+ title={XVerse: Consistent Multi-Subject Control of Identity and Semantic Attributes via DiT Modulation},
30
+ author={Chen, Bowen and Zhao, Mengyi and Sun, Haomiao and Chen, Li and Wang, Xu and Du, Kang and Wu, Xinglong},
31
+ journal={arXiv preprint arXiv:2506.21416},
32
+ year={2025}
33
+ }
34
+ ```
35
+
36
+
37
+ > Disclaimer:
38
+ >
39
+ > Your access to and use of this dataset are at your own risk. We do not guarantee the accuracy of this dataset. The dataset is provided “as is” and we make no warranty or representation to you with respect to it and we expressly disclaim, and hereby expressly waive, all warranties, express, implied, statutory or otherwise. This includes, without limitation, warranties of quality, performance, merchantability or fitness for a particular purpose, non-infringement, absence of latent or other defects, accuracy, or the presence or absence of errors, whether or not known or discoverable.
40
+ >
41
+ > In no event will we be liable to you on any legal theory (including, without limitation, negligence) or otherwise for any direct, special, indirect, incidental, consequential, punitive, exemplary, or other losses, costs, expenses, or damages arising out of this public license or use of the licensed material.
42
+ >
43
+ > The disclaimer of warranties and limitation of liability provided above shall be interpreted in a manner that, to the extent possible, most closely approximates an absolute disclaimer and waiver of all liability.
44
+
assets/XVerseBench/.DS_Store ADDED
Binary file (8.2 kB). View file
 
assets/XVerseBench/human/00_boy.jpg ADDED
assets/XVerseBench/human/01_man.jpg ADDED
assets/XVerseBench/human/02_man.jpg ADDED
assets/XVerseBench/human/03_woman.jpg ADDED
assets/XVerseBench/human/04_little girl.jpg ADDED
assets/XVerseBench/human/05_man.jpg ADDED
assets/XVerseBench/human/06_man.jpg ADDED
assets/XVerseBench/human/07_man.jpg ADDED
assets/XVerseBench/human/08_man.jpg ADDED
assets/XVerseBench/human/09_woman.jpg ADDED
assets/XVerseBench/human/10_man.jpg ADDED
assets/XVerseBench/human/11_man.jpg ADDED
assets/XVerseBench/human/12_woman.jpg ADDED
assets/XVerseBench/human/13_woman.jpg ADDED
assets/XVerseBench/human/14_boy.jpg ADDED
assets/XVerseBench/human/15_woman.jpg ADDED
assets/XVerseBench/human/16_old man.jpg ADDED
assets/XVerseBench/human/17_man.jpg ADDED
assets/XVerseBench/human/18_man.jpg ADDED
assets/XVerseBench/human/19_girl.jpg ADDED
assets/crop_faces.py ADDED
@@ -0,0 +1,62 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import face_recognition
3
+ from PIL import Image, ImageOps
4
+ import numpy as np
5
+
6
+ def detect_and_crop_faces(input_dir, output_dir):
7
+ # 确保输出目录存在
8
+ if not os.path.exists(output_dir):
9
+ os.makedirs(output_dir)
10
+
11
+ # 遍历输入目录中的所有文件
12
+ for filename in os.listdir(input_dir):
13
+ if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
14
+ input_path = os.path.join(input_dir, filename)
15
+ output_path = os.path.join(output_dir, filename.replace('.png', '.jpg'))
16
+
17
+ # 加载图像并处理透明背景
18
+ image = Image.open(input_path).convert("RGBA")
19
+ background = Image.new("RGBA", image.size, "WHITE")
20
+ alpha_composite = Image.alpha_composite(background, image).convert("RGB")
21
+
22
+ # 添加白色边缘,这里 padding 设为 10 像素,可按需调整
23
+ padded_image = ImageOps.expand(alpha_composite, border=10, fill='white')
24
+
25
+ # 尝试不同尺度的图像检测
26
+ scales = [0.6, 0.4, 0.2]
27
+ face_locations = []
28
+ for scale in scales:
29
+ resized_image = padded_image.resize((int(padded_image.width * scale), int(padded_image.height * scale)), Image.LANCZOS)
30
+ image_np = np.array(resized_image)
31
+ # Use the cnn model for detection
32
+ face_locations = face_recognition.face_locations(image_np, model="cnn")
33
+ if face_locations:
34
+ # Adjust the detected face positions to the original image size
35
+ face_locations = [(int(top / scale), int(right / scale), int(bottom / scale), int(left / scale)) for top, right, bottom, left in face_locations]
36
+ break
37
+
38
+ if face_locations:
39
+ # 假设第一个检测到的人脸是需要裁剪的
40
+ top, right, bottom, left = face_locations[0]
41
+ height = bottom - top
42
+ width = right - left
43
+
44
+ # 计算扩充后的区域
45
+ new_top = max(0, int(top - height * 0.3))
46
+ new_bottom = min(np.array(padded_image).shape[0], int(bottom + height * 0.3))
47
+ new_left = max(0, int(left - width * 0.3))
48
+ new_right = min(np.array(padded_image).shape[1], int(right + width * 0.3))
49
+
50
+ face_image = np.array(padded_image)[new_top:new_bottom, new_left:new_right]
51
+ # 将 NumPy 数组转换为 PIL 图像
52
+ face_pil = Image.fromarray(face_image)
53
+ # 保存裁剪后的人脸图像
54
+ face_pil.save(output_path)
55
+ print(f"已裁剪并保存: {output_path}")
56
+ else:
57
+ print(f"未在 {input_path} 中检测到人脸")
58
+
59
+ if __name__ == "__main__":
60
+ input_directory = "/mnt/bn/yg-butterfly-algo/personal/sunhm/code/XVerse/assets/XVerseBench_seg/human_seg"
61
+ output_directory = "/mnt/bn/yg-butterfly-algo/personal/sunhm/code/XVerse/assets/XVerseBench_seg/human"
62
+ detect_and_crop_faces(input_directory, output_directory)
assets/rename.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import shutil
3
+
4
+ split = [("live_subject/animal", "animal"), ("object", "object")]
5
+
6
+ # 定义目录路径
7
+ caption_dir_base = './data/DreamBench_plus/captions'
8
+ image_dir_base = './data/DreamBench_plus/images'
9
+ new_image_dir_base = './data/XVerseBench_rename'
10
+
11
+ for s, ts in split:
12
+ caption_dir = os.path.join(caption_dir_base, s)
13
+ image_dir = os.path.join(image_dir_base, s)
14
+ new_image_dir = os.path.join(new_image_dir_base, ts)
15
+
16
+ # 创建新的目标目录(如果不存在)
17
+ if not os.path.exists(new_image_dir):
18
+ os.makedirs(new_image_dir)
19
+
20
+ # 获取所有 caption 文件
21
+ caption_files = sorted([f for f in os.listdir(caption_dir) if f.endswith('.txt')])
22
+
23
+ for caption_file in caption_files:
24
+ # 提取索引
25
+ index = os.path.splitext(caption_file)[0]
26
+ # 构建 caption 文件完整路径
27
+ caption_file_path = os.path.join(caption_dir, caption_file)
28
+ # 构建对应的图片文件路径
29
+ image_file_name = f'{index}.jpg'
30
+ image_file_path = os.path.join(image_dir, image_file_name)
31
+
32
+ # 检查图片文件是否存在
33
+ if os.path.exists(image_file_path):
34
+ # 读取 caption 文件内容
35
+ with open(caption_file_path, 'r', encoding='utf-8') as f:
36
+ caption = f.read().split('\n')[0].strip()
37
+
38
+ # 生成新的文件名
39
+ new_file_name = f'{index}_{caption}.jpg'
40
+ new_file_path_in_new_dir = os.path.join(new_image_dir, new_file_name)
41
+
42
+ # 移动并重命名文件
43
+ shutil.copy2(image_file_path, new_file_path_in_new_dir)
44
+ print(f'文件 {image_file_path} 已移动并重命名为 {new_file_path_in_new_dir}')
45
+ else:
46
+ print(f'未找到对应的图片文件: {image_file_path}')
47
+
48
+
49
+ old_human_index = ['00', '05', '06', '09', '12', '13', '14', '16', '17']
50
+
51
+ # 新增的文件映射
52
+ new_files = [
53
+ "object/65_anime space ranger.jpg", "object/66_anime girl.jpg", "object/67_pixelated warrior.jpg",
54
+ "object/68_anime girl.jpg", "object/69_anime samurai.jpg", "object/70_anime girl.jpg",
55
+ "object/71_anime Spider-Man.jpg", "object/72_Avatar.jpg", "object/73_anime man.jpg"
56
+ ]
57
+
58
+ # 新增复制文件的代码
59
+ for old_human_index, new_file in zip(old_human_index, new_files):
60
+ # 构建原始图片文件路径
61
+ original_image_path = os.path.join(image_dir_base, "live_subject/human", f"{old_human_index}.jpg")
62
+ # 构建新的图片文件路径
63
+ new_image_path = os.path.join(new_image_dir_base, new_file)
64
+
65
+ # 创建新文件的目录(如果不存在)
66
+ new_image_dir = os.path.dirname(new_image_path)
67
+ if not os.path.exists(new_image_dir):
68
+ os.makedirs(new_image_dir)
69
+
70
+ # 检查原始图片文件是否存在
71
+ if os.path.exists(original_image_path):
72
+ # 复制文件
73
+ shutil.copy2(original_image_path, new_image_path)
74
+ print(f'文件 {original_image_path} 已复制到 {new_image_path}')
75
+ else:
76
+ print(f'未找到对应的图片文件: {original_image_path}')
assets/segmentation.py ADDED
@@ -0,0 +1,76 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from src.utils.data_utils import get_train_config, image_grid, pil2tensor, json_dump, pad_to_square, cv2pil, merge_bboxes
2
+ from eval.tools.florence_sam import ObjectDetector
3
+ import torch
4
+ import os
5
+ from PIL import Image # 补充导入 Image 模块
6
+ import numpy as np
7
+
8
+ def merge_instances(orig_img, indices, ins_bboxes, ins_images):
9
+ orig_image_width, orig_image_height = orig_img.width, orig_img.height
10
+ final_img = Image.new("RGB", (orig_image_width, orig_image_height), color=(255, 255, 255))
11
+ bboxes = []
12
+ for i in indices:
13
+ bbox = np.array(ins_bboxes[i], dtype=int).tolist()
14
+ bboxes.append(bbox)
15
+
16
+ img = cv2pil(ins_images[i])
17
+ mask = (np.array(img)[..., :3] != 255).any(axis=-1)
18
+ mask = Image.fromarray(mask.astype(np.uint8) * 255, mode='L')
19
+ final_img.paste(img, (bbox[0], bbox[1]), mask)
20
+
21
+ bbox = merge_bboxes(bboxes)
22
+ img = final_img.crop(bbox)
23
+ return img, bbox
24
+
25
+ dtype = torch.bfloat16
26
+ device = "cuda"
27
+ detector = ObjectDetector(device)
28
+ def det_seg_img(image, label):
29
+ if isinstance(image, str):
30
+ image = Image.open(image).convert("RGB")
31
+ instance_result_dict = detector.get_multiple_instances(image, label, min_size=image.size[0]//20)
32
+ indices = list(range(len(instance_result_dict["instance_images"])))
33
+ ins, bbox = merge_instances(image, indices, instance_result_dict["instance_bboxes"], instance_result_dict["instance_images"])
34
+ return ins
35
+
36
+ def segment_images_in_folder(input_folder, output_folder):
37
+ """
38
+ 对输入文件夹内所有图像进行分割,并将结果保存到输出文件夹。
39
+
40
+ :param input_folder: 输入图像文件夹路径
41
+ :param output_folder: 输出分割结果的文件夹路径
42
+ """
43
+ # 确保输出文件夹存在
44
+ os.makedirs(output_folder, exist_ok=True)
45
+
46
+ # 遍历输入文件夹及其子文件夹内的所有文件
47
+ for root, _, filenames in os.walk(input_folder):
48
+ for filename in filenames:
49
+ # 检查是否为图像文件
50
+ if filename.lower().endswith(('.png', '.jpg', '.jpeg')):
51
+ file_path = os.path.join(root, filename)
52
+ try:
53
+ # 从文件名中提取标签,假设文件名格式为 "数字_标签.png"
54
+ label = filename.split('_')[-1].rsplit('.', 1)[0].strip()
55
+ # 进行图像分割
56
+ segmentation_result = det_seg_img(file_path, label)
57
+ # 构建输出文件路径,保持原文件名
58
+ relative_path = os.path.relpath(root, input_folder)
59
+ output_subfolder = os.path.join(output_folder, relative_path)
60
+ os.makedirs(output_subfolder, exist_ok=True)
61
+ output_path = os.path.join(output_subfolder, filename)
62
+ # 保存分割结果
63
+ if isinstance(segmentation_result, Image.Image):
64
+ segmentation_result.save(output_path)
65
+ else:
66
+ # 假设 segmentation_result 是可转换为 PIL Image 的对象
67
+ Image.fromarray(segmentation_result).save(output_path)
68
+ except Exception as e:
69
+ print(f"处理文件 {file_path} 时出错: {e}")
70
+
71
+
72
+ # 使用示例
73
+ if __name__ == "__main__":
74
+ input_folder = "./assets/XverseBench_rename"
75
+ output_folder = "./assets/XVerseBench"
76
+ segment_images_in_folder(input_folder, output_folder)
eval/eval_scripts/run_eval_multi.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export config_path="./train/config/XVerse_config_INF.yaml"
2
+ export model_checkpoint="./checkpoints/XVerse"
3
+ export target_size=768
4
+ export condition_size=256
5
+ export test_list_name="XVerseBench_multi"
6
+ export save_name="./eval/XVerseBench_multi"
7
+
8
+ ports=(`echo $METIS_WORKER_0_PORT | tr ',' ' '`)
9
+ port=${ports[-1]}
10
+
11
+ accelerate launch \
12
+ --main_process_port $port \
13
+ -m eval.tools.idip_gen_split_idip \
14
+ --config_name "$config_path" \
15
+ --model_path "$model_checkpoint" \
16
+ --target_size "$target_size" \
17
+ --condition_size "$condition_size" \
18
+ --save_name "$save_name" \
19
+ --test_list_name "$test_list_name"
20
+
21
+ accelerate launch \
22
+ --main_process_port $port \
23
+ -m eval.tools.idip_dpg_score \
24
+ --input_dir "$save_name" \
25
+ --test_list_name "$test_list_name"
26
+
27
+ accelerate launch \
28
+ --main_process_port $port \
29
+ -m eval.tools.idip_aes_score \
30
+ --input_dir "$save_name" \
31
+ --test_list_name "$test_list_name"
32
+
33
+ accelerate launch \
34
+ --main_process_port $port \
35
+ -m eval.tools.idip_face_score \
36
+ --input_dir "$save_name" \
37
+ --test_list_name "$test_list_name"
38
+
39
+ accelerate launch \
40
+ --main_process_port $port \
41
+ -m eval.tools.idip_sam-dino_score \
42
+ --input_dir "$save_name" \
43
+ --test_list_name "$test_list_name"
44
+
45
+ python \
46
+ -m eval.tools.log_scores \
47
+ --input_dir "$save_name" \
48
+ --test_list_name "$test_list_name"
eval/eval_scripts/run_eval_single.sh ADDED
@@ -0,0 +1,48 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ export config_path="./train/config/XVerse_config_INF.yaml"
2
+ export model_checkpoint="./checkpoints/XVerse"
3
+ export target_size=768
4
+ export condition_size=256
5
+ export test_list_name="XVerseBench_single"
6
+ export save_name="./eval/XVerseBench_singleidip"
7
+
8
+ ports=(`echo $METIS_WORKER_0_PORT | tr ',' ' '`)
9
+ port=${ports[-1]}
10
+
11
+ accelerate launch \
12
+ --main_process_port $port \
13
+ -m eval.tools.idip_gen_split_idip \
14
+ --config_name "$config_path" \
15
+ --model_path "$model_checkpoint" \
16
+ --target_size "$target_size" \
17
+ --condition_size "$condition_size" \
18
+ --save_name "$save_name" \
19
+ --test_list_name "$test_list_name"
20
+
21
+ accelerate launch \
22
+ --main_process_port $port \
23
+ -m eval.tools.idip_dpg_score \
24
+ --input_dir "$save_name" \
25
+ --test_list_name "$test_list_name"
26
+
27
+ accelerate launch \
28
+ --main_process_port $port \
29
+ -m eval.tools.idip_aes_score \
30
+ --input_dir "$save_name" \
31
+ --test_list_name "$test_list_name"
32
+
33
+ accelerate launch \
34
+ --main_process_port $port \
35
+ -m eval.tools.idip_face_score \
36
+ --input_dir "$save_name" \
37
+ --test_list_name "$test_list_name"
38
+
39
+ accelerate launch \
40
+ --main_process_port $port \
41
+ -m eval.tools.idip_sam-dino_score \
42
+ --input_dir "$save_name" \
43
+ --test_list_name "$test_list_name"
44
+
45
+ python \
46
+ -m eval.tools.log_scores \
47
+ --input_dir "$save_name" \
48
+ --test_list_name "$test_list_name"
eval/grounded_sam/florence2/config.json ADDED
@@ -0,0 +1,85 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "florence2",
3
+ "architectures": [
4
+ "Florence2ForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_florence2.Florence2Config",
8
+ "AutoModelForCausalLM": "modeling_florence2.Florence2ForConditionalGeneration"
9
+ },
10
+ "bos_token_id": 0,
11
+ "eos_token_id": 2,
12
+ "ignore_index": -100,
13
+ "model_type": "florence2",
14
+ "pad_token_id": 1,
15
+ "projection_dim": 1024,
16
+ "text_config": {
17
+ "vocab_size": 51289,
18
+ "activation_dropout": 0.1,
19
+ "activation_function": "gelu",
20
+ "add_bias_logits": false,
21
+ "add_final_layer_norm": false,
22
+ "attention_dropout": 0.1,
23
+ "bos_token_id": 0,
24
+ "classif_dropout": 0.1,
25
+ "classifier_dropout": 0.0,
26
+ "d_model": 1024,
27
+ "decoder_attention_heads": 16,
28
+ "decoder_ffn_dim": 4096,
29
+ "decoder_layerdrop": 0.0,
30
+ "decoder_layers": 12,
31
+ "decoder_start_token_id": 2,
32
+ "dropout": 0.1,
33
+ "early_stopping": true,
34
+ "encoder_attention_heads": 16,
35
+ "encoder_ffn_dim": 4096,
36
+ "encoder_layerdrop": 0.0,
37
+ "encoder_layers": 12,
38
+ "eos_token_id": 2,
39
+ "forced_eos_token_id": 2,
40
+ "forced_bos_token_id": 0,
41
+ "gradient_checkpointing": false,
42
+ "init_std": 0.02,
43
+ "is_encoder_decoder": true,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1,
47
+ "LABEL_2": 2
48
+ },
49
+ "max_position_embeddings": 1024,
50
+ "no_repeat_ngram_size": 3,
51
+ "normalize_before": false,
52
+ "num_hidden_layers": 12,
53
+ "pad_token_id": 1,
54
+ "scale_embedding": false,
55
+ "num_beams": 3
56
+ },
57
+ "vision_config": {
58
+ "model_type": "davit",
59
+ "drop_path_rate": 0.1,
60
+ "patch_size": [7, 3, 3, 3],
61
+ "patch_stride": [4, 2, 2, 2],
62
+ "patch_padding": [3, 1, 1, 1],
63
+ "patch_prenorm": [false, true, true, true],
64
+ "enable_checkpoint": false,
65
+ "dim_embed": [256, 512, 1024, 2048],
66
+ "num_heads": [8, 16, 32, 64],
67
+ "num_groups": [8, 16, 32, 64],
68
+ "depths": [1, 1, 9, 1],
69
+ "window_size": 12,
70
+ "projection_dim": 1024,
71
+ "visual_temporal_embedding": {
72
+ "type": "COSINE",
73
+ "max_temporal_embeddings": 100
74
+ },
75
+ "image_pos_embed": {
76
+ "type": "learned_abs_2d",
77
+ "max_pos_embeddings": 50
78
+ },
79
+ "image_feature_source": ["spatial_avg_pool", "temporal_avg_pool"]
80
+ },
81
+ "vocab_size": 51289,
82
+ "torch_dtype": "float16",
83
+ "transformers_version": "4.41.0.dev0",
84
+ "is_encoder_decoder": true
85
+ }
eval/grounded_sam/florence2/configuration_florence2.py ADDED
@@ -0,0 +1,340 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and the HuggingFace Inc. team. All rights reserved.
3
+ # Licensed under the Apache License, Version 2.0 (the "License");
4
+ # you may not use this file except in compliance with the License.
5
+ # You may obtain a copy of the License at
6
+ #
7
+ # http://www.apache.org/licenses/LICENSE-2.0
8
+ #
9
+ # Unless required by applicable law or agreed to in writing, software
10
+ # distributed under the License is distributed on an "AS IS" BASIS,
11
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12
+ # See the License for the specific language governing permissions and
13
+ # limitations under the License.
14
+ import warnings
15
+ """ Florence-2 configuration"""
16
+
17
+ from typing import Optional
18
+
19
+ from transformers import AutoConfig
20
+ from transformers.configuration_utils import PretrainedConfig
21
+ from transformers.utils import logging
22
+
23
+ logger = logging.get_logger(__name__)
24
+
25
+ class Florence2VisionConfig(PretrainedConfig):
26
+ r"""
27
+ This is the configuration class to store the configuration of a [`Florence2VisionModel`]. It is used to instantiate a Florence2VisionModel
28
+ according to the specified arguments, defining the model architecture. Instantiating a configuration with the
29
+ defaults will yield a similar configuration to that of the Florence2VisionModel architecture.
30
+
31
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
32
+ documentation from [`PretrainedConfig`] for more information.
33
+
34
+ Args:
35
+ drop_path_rate (`float`, *optional*, defaults to 0.1):
36
+ The dropout rate of the drop path layer.
37
+ patch_size (`List[int]`, *optional*, defaults to [7, 3, 3, 3]):
38
+ The patch size of the image.
39
+ patch_stride (`List[int]`, *optional*, defaults to [4, 2, 2, 2]):
40
+ The patch stride of the image.
41
+ patch_padding (`List[int]`, *optional*, defaults to [3, 1, 1, 1]):
42
+ The patch padding of the image.
43
+ patch_prenorm (`List[bool]`, *optional*, defaults to [false, true, true, true]):
44
+ Whether to apply layer normalization before the patch embedding layer.
45
+ enable_checkpoint (`bool`, *optional*, defaults to False):
46
+ Whether to enable checkpointing.
47
+ dim_embed (`List[int]`, *optional*, defaults to [256, 512, 1024, 2048]):
48
+ The dimension of the embedding layer.
49
+ num_heads (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
50
+ The number of attention heads.
51
+ num_groups (`List[int]`, *optional*, defaults to [8, 16, 32, 64]):
52
+ The number of groups.
53
+ depths (`List[int]`, *optional*, defaults to [1, 1, 9, 1]):
54
+ The depth of the model.
55
+ window_size (`int`, *optional*, defaults to 12):
56
+ The window size of the model.
57
+ projection_dim (`int`, *optional*, defaults to 1024):
58
+ The dimension of the projection layer.
59
+ visual_temporal_embedding (`dict`, *optional*):
60
+ The configuration of the visual temporal embedding.
61
+ image_pos_embed (`dict`, *optional*):
62
+ The configuration of the image position embedding.
63
+ image_feature_source (`List[str]`, *optional*, defaults to ["spatial_avg_pool", "temporal_avg_pool"]):
64
+ The source of the image feature.
65
+ Example:
66
+
67
+ ```python
68
+ >>> from transformers import Florence2VisionConfig, Florence2VisionModel
69
+
70
+ >>> # Initializing a Florence2 Vision style configuration
71
+ >>> configuration = Florence2VisionConfig()
72
+
73
+ >>> # Initializing a model (with random weights)
74
+ >>> model = Florence2VisionModel(configuration)
75
+
76
+ >>> # Accessing the model configuration
77
+ >>> configuration = model.config
78
+ ```"""
79
+
80
+ model_type = "florence2_vision"
81
+ keys_to_ignore_at_inference = ["past_key_values"]
82
+
83
+ def __init__(
84
+ self,
85
+ drop_path_rate=0.1,
86
+ patch_size=[7, 3, 3, 3],
87
+ patch_stride=[4, 2, 2, 2],
88
+ patch_padding=[3, 1, 1, 1],
89
+ patch_prenorm=[False, True, True, True],
90
+ enable_checkpoint=False,
91
+ dim_embed=[256, 512, 1024, 2048],
92
+ num_heads=[8, 16, 32, 64],
93
+ num_groups=[8, 16, 32, 64],
94
+ depths=[1, 1, 9, 1],
95
+ window_size=12,
96
+ projection_dim=1024,
97
+ visual_temporal_embedding=None,
98
+ image_pos_embed=None,
99
+ image_feature_source=["spatial_avg_pool", "temporal_avg_pool"],
100
+ **kwargs,
101
+ ):
102
+ self.drop_path_rate = drop_path_rate
103
+ self.patch_size = patch_size
104
+ self.patch_stride = patch_stride
105
+ self.patch_padding = patch_padding
106
+ self.patch_prenorm = patch_prenorm
107
+ self.enable_checkpoint = enable_checkpoint
108
+ self.dim_embed = dim_embed
109
+ self.num_heads = num_heads
110
+ self.num_groups = num_groups
111
+ self.depths = depths
112
+ self.window_size = window_size
113
+ self.projection_dim = projection_dim
114
+ self.visual_temporal_embedding = visual_temporal_embedding
115
+ self.image_pos_embed = image_pos_embed
116
+ self.image_feature_source = image_feature_source
117
+
118
+ super().__init__(**kwargs)
119
+
120
+
121
+
122
+ class Florence2LanguageConfig(PretrainedConfig):
123
+ r"""
124
+ This is the configuration class to store the configuration of a [`Florence2LanguagePreTrainedModel`]. It is used to instantiate a BART
125
+ model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
126
+ defaults will yield a similar configuration to that of the BART
127
+ [facebook/bart-large](https://huggingface.co/facebook/bart-large) architecture.
128
+
129
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
130
+ documentation from [`PretrainedConfig`] for more information.
131
+
132
+
133
+ Args:
134
+ vocab_size (`int`, *optional*, defaults to 51289):
135
+ Vocabulary size of the Florence2Language model. Defines the number of different tokens that can be represented by the
136
+ `inputs_ids` passed when calling [`Florence2LanguageModel`].
137
+ d_model (`int`, *optional*, defaults to 1024):
138
+ Dimensionality of the layers and the pooler layer.
139
+ encoder_layers (`int`, *optional*, defaults to 12):
140
+ Number of encoder layers.
141
+ decoder_layers (`int`, *optional*, defaults to 12):
142
+ Number of decoder layers.
143
+ encoder_attention_heads (`int`, *optional*, defaults to 16):
144
+ Number of attention heads for each attention layer in the Transformer encoder.
145
+ decoder_attention_heads (`int`, *optional*, defaults to 16):
146
+ Number of attention heads for each attention layer in the Transformer decoder.
147
+ decoder_ffn_dim (`int`, *optional*, defaults to 4096):
148
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
149
+ encoder_ffn_dim (`int`, *optional*, defaults to 4096):
150
+ Dimensionality of the "intermediate" (often named feed-forward) layer in decoder.
151
+ activation_function (`str` or `function`, *optional*, defaults to `"gelu"`):
152
+ The non-linear activation function (function or string) in the encoder and pooler. If string, `"gelu"`,
153
+ `"relu"`, `"silu"` and `"gelu_new"` are supported.
154
+ dropout (`float`, *optional*, defaults to 0.1):
155
+ The dropout probability for all fully connected layers in the embeddings, encoder, and pooler.
156
+ attention_dropout (`float`, *optional*, defaults to 0.0):
157
+ The dropout ratio for the attention probabilities.
158
+ activation_dropout (`float`, *optional*, defaults to 0.0):
159
+ The dropout ratio for activations inside the fully connected layer.
160
+ classifier_dropout (`float`, *optional*, defaults to 0.0):
161
+ The dropout ratio for classifier.
162
+ max_position_embeddings (`int`, *optional*, defaults to 1024):
163
+ The maximum sequence length that this model might ever be used with. Typically set this to something large
164
+ just in case (e.g., 512 or 1024 or 2048).
165
+ init_std (`float`, *optional*, defaults to 0.02):
166
+ The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
167
+ encoder_layerdrop (`float`, *optional*, defaults to 0.0):
168
+ The LayerDrop probability for the encoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
169
+ for more details.
170
+ decoder_layerdrop (`float`, *optional*, defaults to 0.0):
171
+ The LayerDrop probability for the decoder. See the [LayerDrop paper](see https://arxiv.org/abs/1909.11556)
172
+ for more details.
173
+ scale_embedding (`bool`, *optional*, defaults to `False`):
174
+ Scale embeddings by diving by sqrt(d_model).
175
+ use_cache (`bool`, *optional*, defaults to `True`):
176
+ Whether or not the model should return the last key/values attentions (not used by all models).
177
+ num_labels (`int`, *optional*, defaults to 3):
178
+ The number of labels to use in [`Florence2LanguageForSequenceClassification`].
179
+ forced_eos_token_id (`int`, *optional*, defaults to 2):
180
+ The id of the token to force as the last generated token when `max_length` is reached. Usually set to
181
+ `eos_token_id`.
182
+
183
+ Example:
184
+
185
+ ```python
186
+ >>> from transformers import Florence2LanguageConfig, Florence2LanguageModel
187
+
188
+ >>> # Initializing a Florence2 Language style configuration
189
+ >>> configuration = Florence2LanguageConfig()
190
+
191
+ >>> # Initializing a model (with random weights)
192
+ >>> model = Florence2LangaugeModel(configuration)
193
+
194
+ >>> # Accessing the model configuration
195
+ >>> configuration = model.config
196
+ ```"""
197
+
198
+ model_type = "florence2_language"
199
+ keys_to_ignore_at_inference = ["past_key_values"]
200
+ attribute_map = {"num_attention_heads": "encoder_attention_heads", "hidden_size": "d_model"}
201
+
202
+ def __init__(
203
+ self,
204
+ vocab_size=51289,
205
+ max_position_embeddings=1024,
206
+ encoder_layers=12,
207
+ encoder_ffn_dim=4096,
208
+ encoder_attention_heads=16,
209
+ decoder_layers=12,
210
+ decoder_ffn_dim=4096,
211
+ decoder_attention_heads=16,
212
+ encoder_layerdrop=0.0,
213
+ decoder_layerdrop=0.0,
214
+ activation_function="gelu",
215
+ d_model=1024,
216
+ dropout=0.1,
217
+ attention_dropout=0.0,
218
+ activation_dropout=0.0,
219
+ init_std=0.02,
220
+ classifier_dropout=0.0,
221
+ scale_embedding=False,
222
+ use_cache=True,
223
+ num_labels=3,
224
+ pad_token_id=1,
225
+ bos_token_id=0,
226
+ eos_token_id=2,
227
+ is_encoder_decoder=True,
228
+ decoder_start_token_id=2,
229
+ forced_eos_token_id=2,
230
+ **kwargs,
231
+ ):
232
+ self.vocab_size = vocab_size
233
+ self.max_position_embeddings = max_position_embeddings
234
+ self.d_model = d_model
235
+ self.encoder_ffn_dim = encoder_ffn_dim
236
+ self.encoder_layers = encoder_layers
237
+ self.encoder_attention_heads = encoder_attention_heads
238
+ self.decoder_ffn_dim = decoder_ffn_dim
239
+ self.decoder_layers = decoder_layers
240
+ self.decoder_attention_heads = decoder_attention_heads
241
+ self.dropout = dropout
242
+ self.attention_dropout = attention_dropout
243
+ self.activation_dropout = activation_dropout
244
+ self.activation_function = activation_function
245
+ self.init_std = init_std
246
+ self.encoder_layerdrop = encoder_layerdrop
247
+ self.decoder_layerdrop = decoder_layerdrop
248
+ self.classifier_dropout = classifier_dropout
249
+ self.use_cache = use_cache
250
+ self.num_hidden_layers = encoder_layers
251
+ self.scale_embedding = scale_embedding # scale factor will be sqrt(d_model) if True
252
+
253
+ super().__init__(
254
+ num_labels=num_labels,
255
+ pad_token_id=pad_token_id,
256
+ bos_token_id=bos_token_id,
257
+ eos_token_id=eos_token_id,
258
+ is_encoder_decoder=is_encoder_decoder,
259
+ decoder_start_token_id=decoder_start_token_id,
260
+ forced_eos_token_id=forced_eos_token_id,
261
+ **kwargs,
262
+ )
263
+
264
+ # ensure backward compatibility for BART CNN models
265
+ if self.forced_bos_token_id is None and kwargs.get("force_bos_token_to_be_generated", False):
266
+ self.forced_bos_token_id = self.bos_token_id
267
+ warnings.warn(
268
+ f"Please make sure the config includes `forced_bos_token_id={self.bos_token_id}` in future versions. "
269
+ "The config can simply be saved and uploaded again to be fixed."
270
+ )
271
+
272
+ class Florence2Config(PretrainedConfig):
273
+ r"""
274
+ This is the configuration class to store the configuration of a [`Florence2ForConditionalGeneration`]. It is used to instantiate an
275
+ Florence-2 model according to the specified arguments, defining the model architecture.
276
+
277
+ Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
278
+ documentation from [`PretrainedConfig`] for more information.
279
+
280
+ Args:
281
+ vision_config (`Florence2VisionConfig`, *optional*):
282
+ Custom vision config or dict
283
+ text_config (`Union[AutoConfig, dict]`, *optional*):
284
+ The config object of the text backbone.
285
+ ignore_index (`int`, *optional*, defaults to -100):
286
+ The ignore index for the loss function.
287
+ vocab_size (`int`, *optional*, defaults to 51289):
288
+ Vocabulary size of the Florence2model. Defines the number of different tokens that can be represented by the
289
+ `inputs_ids` passed when calling [`~Florence2ForConditionalGeneration`]
290
+ projection_dim (`int`, *optional*, defaults to 1024):
291
+ Dimension of the multimodal projection space.
292
+
293
+ Example:
294
+
295
+ ```python
296
+ >>> from transformers import Florence2ForConditionalGeneration, Florence2Config, CLIPVisionConfig, BartConfig
297
+
298
+ >>> # Initializing a clip-like vision config
299
+ >>> vision_config = CLIPVisionConfig()
300
+
301
+ >>> # Initializing a Bart config
302
+ >>> text_config = BartConfig()
303
+
304
+ >>> # Initializing a Florence-2 configuration
305
+ >>> configuration = Florence2Config(vision_config, text_config)
306
+
307
+ >>> # Initializing a model from the florence-2 configuration
308
+ >>> model = Florence2ForConditionalGeneration(configuration)
309
+
310
+ >>> # Accessing the model configuration
311
+ >>> configuration = model.config
312
+ ```"""
313
+
314
+ model_type = "florence2"
315
+ is_composition = False
316
+
317
+ def __init__(
318
+ self,
319
+ vision_config=None,
320
+ text_config=None,
321
+ ignore_index=-100,
322
+ vocab_size=51289,
323
+ projection_dim=1024,
324
+ **kwargs,
325
+ ):
326
+ self.ignore_index = ignore_index
327
+ self.vocab_size = vocab_size
328
+ self.projection_dim = projection_dim
329
+ if vision_config is not None:
330
+ vision_config = PretrainedConfig(**vision_config)
331
+ self.vision_config = vision_config
332
+ self.vocab_size = self.vocab_size
333
+
334
+ self.text_config = text_config
335
+ if text_config is not None:
336
+ self.text_config = Florence2LanguageConfig(**text_config)
337
+
338
+
339
+ super().__init__(**kwargs)
340
+
eval/grounded_sam/florence2/generation_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "num_beams": 3,
3
+ "early_stopping": false
4
+ }
eval/grounded_sam/florence2/modeling_florence2.py ADDED
The diff for this file is too large to render. See raw diff
 
eval/grounded_sam/florence2/preprocessor_config.json ADDED
@@ -0,0 +1,39 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "auto_map": {
3
+ "AutoProcessor": "processing_florence2.Florence2Processor"
4
+ },
5
+ "_valid_processor_keys": [
6
+ "images",
7
+ "do_resize",
8
+ "size",
9
+ "resample",
10
+ "do_rescale",
11
+ "rescale_factor",
12
+ "do_normalize",
13
+ "image_mean",
14
+ "image_std",
15
+ "return_tensors",
16
+ "data_format",
17
+ "input_data_format",
18
+ "do_convert_rgb"
19
+ ],
20
+ "do_convert_rgb": null,
21
+ "do_normalize": true,
22
+ "do_rescale": true,
23
+ "do_resize": true,
24
+ "do_center_crop": false,
25
+ "image_processor_type": "CLIPImageProcessor",
26
+ "image_seq_length": 577,
27
+ "image_mean": [0.485, 0.456, 0.406],
28
+ "image_std": [0.229, 0.224, 0.225],
29
+ "processor_class": "Florence2Processor",
30
+ "resample": 3,
31
+ "size": {
32
+ "height": 768,
33
+ "width":768
34
+ },
35
+ "crop_size": {
36
+ "height": 768,
37
+ "width": 768
38
+ }
39
+ }
eval/grounded_sam/florence2/processing_florence2.py ADDED
@@ -0,0 +1,1147 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ # Copyright 2024 Microsoft and The HuggingFace Inc. team.
3
+ #
4
+ # Licensed under the Apache License, Version 2.0 (the "License");
5
+ # you may not use this file except in compliance with the License.
6
+ # You may obtain a copy of the License at
7
+ #
8
+ # http://www.apache.org/licenses/LICENSE-2.0
9
+ #
10
+ # Unless required by applicable law or agreed to in writing, software
11
+ # distributed under the License is distributed on an "AS IS" BASIS,
12
+ # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13
+ # See the License for the specific language governing permissions and
14
+ # limitations under the License.
15
+ """
16
+ Processor class for Florence-2.
17
+ """
18
+
19
+ import re
20
+ import logging
21
+ from typing import List, Optional, Union
22
+ import numpy as np
23
+ import math
24
+
25
+ import torch
26
+
27
+ from transformers.feature_extraction_utils import BatchFeature
28
+ from transformers.image_utils import ImageInput, is_valid_image
29
+ from transformers.processing_utils import ProcessorMixin
30
+ from transformers.tokenization_utils_base import (
31
+ PaddingStrategy,
32
+ PreTokenizedInput,
33
+ TextInput,
34
+ TruncationStrategy,
35
+ )
36
+ from transformers import BartTokenizer, BartTokenizerFast
37
+ from transformers.utils import TensorType
38
+
39
+
40
+ logger = logging.getLogger(__name__)
41
+
42
+ # Copied from transformers.models.idefics2.processing_idefics2.is_url
43
+ def is_url(val) -> bool:
44
+ return isinstance(val, str) and val.startswith("http")
45
+
46
+ # Copied from transformers.models.idefics2.processing_idefics2.is_image_or_image_url
47
+ def is_image_or_image_url(elem):
48
+ return is_url(elem) or is_valid_image(elem)
49
+
50
+
51
+ def _is_str_or_image(elem):
52
+ return isinstance(elem, (str)) or is_image_or_image_url(elem)
53
+
54
+
55
+ class Florence2Processor(ProcessorMixin):
56
+ r"""
57
+ Constructs a Florence2 processor which wraps a Florence2 image processor and a Florence2 tokenizer into a single processor.
58
+
59
+ [`Florence2Processor`] offers all the functionalities of [`CLIPImageProcessor`] and [`BartTokenizerFast`]. See the
60
+ [`~Florence2Processor.__call__`] and [`~Florence2Processor.decode`] for more information.
61
+
62
+ Args:
63
+ image_processor ([`CLIPImageProcessor`], *optional*):
64
+ The image processor is a required input.
65
+ tokenizer ([`BartTokenizerFast`], *optional*):
66
+ The tokenizer is a required input.
67
+ """
68
+
69
+ attributes = ["image_processor", "tokenizer"]
70
+ image_processor_class = "CLIPImageProcessor"
71
+ tokenizer_class = ("BartTokenizer", "BartTokenizerFast")
72
+
73
+ def __init__(
74
+ self,
75
+ image_processor=None,
76
+ tokenizer=None,
77
+ ):
78
+ if image_processor is None:
79
+ raise ValueError("You need to specify an `image_processor`.")
80
+ if tokenizer is None:
81
+ raise ValueError("You need to specify a `tokenizer`.")
82
+ if not hasattr(image_processor, "image_seq_length"):
83
+ raise ValueError("Image processor is missing an `image_seq_length` attribute.")
84
+
85
+ self.image_seq_length = image_processor.image_seq_length
86
+
87
+ tokens_to_add = {
88
+ 'additional_special_tokens': \
89
+ tokenizer.additional_special_tokens + \
90
+ ['<od>', '</od>', '<ocr>', '</ocr>'] + \
91
+ [f'<loc_{x}>' for x in range(1000)] + \
92
+ ['<cap>', '</cap>', '<ncap>', '</ncap>','<dcap>', '</dcap>', '<grounding>', '</grounding>', '<seg>', '</seg>', '<sep>', '<region_cap>', '</region_cap>', '<region_to_desciption>', '</region_to_desciption>', '<proposal>', '</proposal>', '<poly>', '</poly>', '<and>']
93
+ }
94
+ tokenizer.add_special_tokens(tokens_to_add)
95
+
96
+ self.tasks_answer_post_processing_type = {
97
+ '<OCR>': 'pure_text',
98
+ '<OCR_WITH_REGION>': 'ocr',
99
+ '<CAPTION>': 'pure_text',
100
+ '<DETAILED_CAPTION>': 'pure_text',
101
+ '<MORE_DETAILED_CAPTION>': 'pure_text',
102
+ '<OD>': 'description_with_bboxes',
103
+ '<DENSE_REGION_CAPTION>': 'description_with_bboxes',
104
+ '<CAPTION_TO_PHRASE_GROUNDING>': "phrase_grounding",
105
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'polygons',
106
+ '<REGION_TO_SEGMENTATION>': 'polygons',
107
+ '<OPEN_VOCABULARY_DETECTION>': 'description_with_bboxes_or_polygons',
108
+ '<REGION_TO_CATEGORY>': 'pure_text',
109
+ '<REGION_TO_DESCRIPTION>': 'pure_text',
110
+ '<REGION_TO_OCR>': 'pure_text',
111
+ '<REGION_PROPOSAL>': 'bboxes'
112
+ }
113
+
114
+ self.task_prompts_without_inputs = {
115
+ '<OCR>': 'What is the text in the image?',
116
+ '<OCR_WITH_REGION>': 'What is the text in the image, with regions?',
117
+ '<CAPTION>': 'What does the image describe?',
118
+ '<DETAILED_CAPTION>': 'Describe in detail what is shown in the image.',
119
+ '<MORE_DETAILED_CAPTION>': 'Describe with a paragraph what is shown in the image.',
120
+ '<OD>': 'Locate the objects with category name in the image.',
121
+ '<DENSE_REGION_CAPTION>': 'Locate the objects in the image, with their descriptions.',
122
+ '<REGION_PROPOSAL>': 'Locate the region proposals in the image.'
123
+ }
124
+
125
+ self.task_prompts_with_input = {
126
+ '<CAPTION_TO_PHRASE_GROUNDING>': "Locate the phrases in the caption: {input}",
127
+ '<REFERRING_EXPRESSION_SEGMENTATION>': 'Locate {input} in the image with mask',
128
+ '<REGION_TO_SEGMENTATION>': 'What is the polygon mask of region {input}',
129
+ '<OPEN_VOCABULARY_DETECTION>': 'Locate {input} in the image.',
130
+ '<REGION_TO_CATEGORY>': 'What is the region {input}?',
131
+ '<REGION_TO_DESCRIPTION>': 'What does the region {input} describe?',
132
+ '<REGION_TO_OCR>': 'What text is in the region {input}?',
133
+ }
134
+
135
+ self.post_processor = Florence2PostProcesser(tokenizer=tokenizer)
136
+
137
+
138
+ super().__init__(image_processor, tokenizer)
139
+
140
+ def _construct_prompts(self, text):
141
+ # replace the task tokens with the task prompts if task token is in the text
142
+ prompts = []
143
+ for _text in text:
144
+ # 1. fixed task prompts without additional inputs
145
+ for task_token, task_prompt in self.task_prompts_without_inputs.items():
146
+ if task_token in _text:
147
+ assert _text == task_token, f"Task token {task_token} should be the only token in the text."
148
+ _text = task_prompt
149
+ break
150
+ # 2. task prompts with additional inputs
151
+ for task_token, task_prompt in self.task_prompts_with_input.items():
152
+ if task_token in _text:
153
+ _text = task_prompt.format(input=_text.replace(task_token, ''))
154
+ break
155
+ prompts.append(_text)
156
+ return prompts
157
+
158
+ def __call__(
159
+ self,
160
+ text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]] = None,
161
+ images: ImageInput = None,
162
+ tokenize_newline_separately: bool = True,
163
+ padding: Union[bool, str, PaddingStrategy] = False,
164
+ truncation: Union[bool, str, TruncationStrategy] = None,
165
+ max_length=None,
166
+ return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
167
+ do_resize: bool = None,
168
+ do_normalize: bool = None,
169
+ image_mean: Optional[Union[float, List[float]]] = None,
170
+ image_std: Optional[Union[float, List[float]]] = None,
171
+ data_format: Optional["ChannelDimension"] = "channels_first", # noqa: F821
172
+ input_data_format: Optional[
173
+ Union[str, "ChannelDimension"] # noqa: F821
174
+ ] = None,
175
+ resample: "PILImageResampling" = None, # noqa: F821
176
+ do_convert_rgb: bool = None,
177
+ do_thumbnail: bool = None,
178
+ do_align_long_axis: bool = None,
179
+ do_rescale: bool = None,
180
+ ) -> BatchFeature:
181
+ """
182
+ Main method to prepare for the model one or several sequences(s) and image(s). This method forwards the `text`
183
+ and `kwargs` arguments to BartTokenizerFast's [`~BartTokenizerFast.__call__`] if `text` is not `None` to encode
184
+ the text. To prepare the image(s), this method forwards the `images` and `kwrags` arguments to
185
+ CLIPImageProcessor's [`~CLIPImageProcessor.__call__`] if `images` is not `None`. Please refer to the doctsring
186
+ of the above two methods for more information.
187
+
188
+ Args:
189
+ text (`str`, `List[str]`, `List[List[str]]`):
190
+ The sequence or batch of sequences to be encoded. Each sequence can be a string or a list of strings
191
+ (pretokenized string). If the sequences are provided as list of strings (pretokenized), you must set
192
+ `is_split_into_words=True` (to lift the ambiguity with a batch of sequences).
193
+ images (`PIL.Image.Image`, `np.ndarray`, `torch.Tensor`, `List[PIL.Image.Image]`, `List[np.ndarray]`, `List[torch.Tensor]`):
194
+ The image or batch of images to be prepared. Each image can be a PIL image, NumPy array or PyTorch
195
+ tensor. In case of a NumPy array/PyTorch tensor, each image should be of shape (C, H, W), where C is a
196
+ number of channels, H and W are image height and width.
197
+ tokenize_newline_separately (`bool`, defaults to `True`):
198
+ Adds a separately tokenized '\n' at the end of the prompt.
199
+ padding (`bool`, `str` or [`~utils.PaddingStrategy`], *optional*, defaults to `False`):
200
+ Select a strategy to pad the returned sequences (according to the model's padding side and padding
201
+ index) among:
202
+ - `True` or `'longest'`: Pad to the longest sequence in the batch (or no padding if only a single
203
+ sequence if provided).
204
+ - `'max_length'`: Pad to a maximum length specified with the argument `max_length` or to the maximum
205
+ acceptable input length for the model if that argument is not provided.
206
+ - `False` or `'do_not_pad'` (default): No padding (i.e., can output a batch with sequences of different
207
+ lengths).
208
+ max_length (`int`, *optional*):
209
+ Maximum length of the returned list and optionally padding length (see above).
210
+ truncation (`bool`, *optional*):
211
+ Activates truncation to cut input sequences longer than `max_length` to `max_length`.
212
+ return_tensors (`str` or [`~utils.TensorType`], *optional*):
213
+ If set, will return tensors of a particular framework. Acceptable values are:
214
+
215
+ - `'tf'`: Return TensorFlow `tf.constant` objects.
216
+ - `'pt'`: Return PyTorch `torch.Tensor` objects.
217
+ - `'np'`: Return NumPy `np.ndarray` objects.
218
+ - `'jax'`: Return JAX `jnp.ndarray` objects.
219
+
220
+ Returns:
221
+ [`BatchFeature`]: A [`BatchFeature`] with the following fields:
222
+
223
+ - **input_ids** -- List of token ids to be fed to a model. Returned when `text` is not `None`. If `suffix`
224
+ is provided, the `input_ids` will also contain the suffix input ids.
225
+ - **attention_mask** -- List of indices specifying which tokens should be attended to by the model (when
226
+ `return_attention_mask=True` or if *"attention_mask"* is in `self.model_input_names` and if `text` is not
227
+ `None`).
228
+ - **pixel_values** -- Pixel values to be fed to a model. Returned when `images` is not `None`.
229
+ - **labels** -- Labels compatible with training if `suffix` is not None
230
+ """
231
+
232
+ return_token_type_ids = False
233
+
234
+ if images is None:
235
+ raise ValueError("`images` are expected as arguments to a `Florence2Processor` instance.")
236
+ if text is None:
237
+ logger.warning_once(
238
+ "You are using Florence-2 without a text prompt."
239
+ )
240
+ text = ""
241
+
242
+ if isinstance(text, List) and isinstance(images, List):
243
+ if len(images) < len(text):
244
+ raise ValueError(
245
+ f"Received {len(images)} images for {len(text)} prompts. Each prompt should be associated with an image."
246
+ )
247
+ if _is_str_or_image(text):
248
+ text = [text]
249
+ elif isinstance(text, list) and _is_str_or_image(text[0]):
250
+ pass
251
+
252
+ pixel_values = self.image_processor(
253
+ images,
254
+ do_resize=do_resize,
255
+ do_normalize=do_normalize,
256
+ return_tensors=return_tensors,
257
+ image_mean=image_mean,
258
+ image_std=image_std,
259
+ input_data_format=input_data_format,
260
+ data_format=data_format,
261
+ resample=resample,
262
+ do_convert_rgb=do_convert_rgb,
263
+ )["pixel_values"]
264
+
265
+ if max_length is not None:
266
+ max_length -= self.image_seq_length # max_length has to account for the image tokens
267
+
268
+ text = self._construct_prompts(text)
269
+
270
+ inputs = self.tokenizer(
271
+ text,
272
+ return_tensors=return_tensors,
273
+ padding=padding,
274
+ max_length=max_length,
275
+ truncation=truncation,
276
+ return_token_type_ids=return_token_type_ids,
277
+ )
278
+
279
+ return_data = {**inputs, "pixel_values": pixel_values}
280
+
281
+ if return_token_type_ids:
282
+ labels = inputs["input_ids"].masked_fill(inputs["token_type_ids"] == 0, -100)
283
+ return_data.update({"labels": labels})
284
+ return BatchFeature(data=return_data)
285
+
286
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.batch_decode with CLIP->Florence2
287
+ def batch_decode(self, *args, **kwargs):
288
+ """
289
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.batch_decode`]. Please
290
+ refer to the docstring of this method for more information.
291
+ """
292
+ return self.tokenizer.batch_decode(*args, **kwargs)
293
+
294
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.decode with CLIP->Florence2
295
+ def decode(self, *args, **kwargs):
296
+ """
297
+ This method forwards all its arguments to BartTokenizerFast's [`~PreTrainedTokenizer.decode`]. Please refer to
298
+ the docstring of this method for more information.
299
+ """
300
+ return self.tokenizer.decode(*args, **kwargs)
301
+
302
+ @property
303
+ # Copied from transformers.models.clip.processing_clip.CLIPProcessor.model_input_names with CLIP->Florence2
304
+ def model_input_names(self):
305
+ tokenizer_input_names = self.tokenizer.model_input_names
306
+ image_processor_input_names = self.image_processor.model_input_names
307
+ return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
308
+
309
+ def post_process_generation(self, text=None, sequence=None, transition_beam_score=None, task=None, image_size=None):
310
+ """
311
+ Post-process the output of the model to each of the task outputs.
312
+
313
+ Args:
314
+ text (`str`): The text to post-process.
315
+ task (`str`): The task to post-process the text for.
316
+ image_size (`Tuple[int, int]`): The size of the image. height x width.
317
+ """
318
+
319
+ task_answer_post_processing_type = self.tasks_answer_post_processing_type.get(task, 'pure_text')
320
+ task_answer = self.post_processor(
321
+ text=text,
322
+ sequence=sequence,
323
+ transition_beam_score=transition_beam_score,
324
+ image_size=image_size,
325
+ parse_tasks=task_answer_post_processing_type,
326
+ )[task_answer_post_processing_type]
327
+
328
+ if task_answer_post_processing_type == 'pure_text':
329
+ final_answer = task_answer
330
+ # remove the special tokens
331
+ final_answer = final_answer.replace('<s>', '').replace('</s>', '')
332
+ elif task_answer_post_processing_type in ['od', 'description_with_bboxes', 'bboxes']:
333
+ od_instances = task_answer
334
+ bboxes_od = [_od_instance['bbox'] for _od_instance in od_instances]
335
+ labels_od = [str(_od_instance['cat_name']) for _od_instance in od_instances]
336
+ final_answer = {'bboxes': bboxes_od, 'labels': labels_od}
337
+ if len(od_instances) and 'score' in od_instances[0]:
338
+ scores_od = [_od_instance['score'] for _od_instance in od_instances]
339
+ final_answer['scores'] = scores_od
340
+ elif task_answer_post_processing_type in ['ocr']:
341
+ bboxes = [_od_instance['quad_box'] for _od_instance in task_answer]
342
+ labels = [str(_od_instance['text']) for _od_instance in task_answer]
343
+ final_answer = {'quad_boxes': bboxes, 'labels': labels}
344
+ elif task_answer_post_processing_type in ['phrase_grounding']:
345
+ bboxes = []
346
+ labels = []
347
+ for _grounded_phrase in task_answer:
348
+ for _bbox in _grounded_phrase['bbox']:
349
+ bboxes.append(_bbox)
350
+ labels.append(_grounded_phrase['cat_name'])
351
+ final_answer = {'bboxes': bboxes, 'labels': labels}
352
+ elif task_answer_post_processing_type in ['description_with_polygons', 'polygons']:
353
+ labels = []
354
+ polygons = []
355
+ for result in task_answer:
356
+ label = result['cat_name']
357
+ _polygons = result['polygons']
358
+ labels.append(label)
359
+ polygons.append(_polygons)
360
+ final_answer = {'polygons': polygons, 'labels': labels}
361
+ elif task_answer_post_processing_type in ['description_with_bboxes_or_polygons']:
362
+ bboxes = []
363
+ bboxes_labels = []
364
+ polygons = []
365
+ polygons_labels = []
366
+ for result in task_answer:
367
+ label = result['cat_name']
368
+ if 'polygons' in result:
369
+ _polygons = result['polygons']
370
+ polygons.append(_polygons)
371
+ polygons_labels.append(label)
372
+ else:
373
+ _bbox = result['bbox']
374
+ bboxes.append(_bbox)
375
+ bboxes_labels.append(label)
376
+ final_answer = {'bboxes': bboxes, 'bboxes_labels': bboxes_labels, 'polygons': polygons, 'polygons_labels': polygons_labels}
377
+ else:
378
+ raise ValueError('Unknown task answer post processing type: {}'.format(task_answer_post_processing_type))
379
+
380
+ final_answer = {
381
+ task: final_answer}
382
+ return final_answer
383
+
384
+ class BoxQuantizer(object):
385
+ def __init__(self, mode, bins):
386
+ self.mode = mode
387
+ self.bins = bins
388
+
389
+ def quantize(self, boxes: torch.Tensor, size):
390
+ bins_w, bins_h = self.bins # Quantization bins.
391
+ size_w, size_h = size # Original image size.
392
+ size_per_bin_w = size_w / bins_w
393
+ size_per_bin_h = size_h / bins_h
394
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
395
+
396
+ if self.mode == 'floor':
397
+ quantized_xmin = (
398
+ xmin / size_per_bin_w).floor().clamp(0, bins_w - 1)
399
+ quantized_ymin = (
400
+ ymin / size_per_bin_h).floor().clamp(0, bins_h - 1)
401
+ quantized_xmax = (
402
+ xmax / size_per_bin_w).floor().clamp(0, bins_w - 1)
403
+ quantized_ymax = (
404
+ ymax / size_per_bin_h).floor().clamp(0, bins_h - 1)
405
+
406
+ elif self.mode == 'round':
407
+ raise NotImplementedError()
408
+
409
+ else:
410
+ raise ValueError('Incorrect quantization type.')
411
+
412
+ quantized_boxes = torch.cat(
413
+ (quantized_xmin, quantized_ymin, quantized_xmax, quantized_ymax), dim=-1
414
+ ).int()
415
+
416
+ return quantized_boxes
417
+
418
+ def dequantize(self, boxes: torch.Tensor, size):
419
+ bins_w, bins_h = self.bins # Quantization bins.
420
+ size_w, size_h = size # Original image size.
421
+ size_per_bin_w = size_w / bins_w
422
+ size_per_bin_h = size_h / bins_h
423
+ xmin, ymin, xmax, ymax = boxes.split(1, dim=-1) # Shape: 4 * [N, 1].
424
+
425
+ if self.mode == 'floor':
426
+ # Add 0.5 to use the center position of the bin as the coordinate.
427
+ dequantized_xmin = (xmin + 0.5) * size_per_bin_w
428
+ dequantized_ymin = (ymin + 0.5) * size_per_bin_h
429
+ dequantized_xmax = (xmax + 0.5) * size_per_bin_w
430
+ dequantized_ymax = (ymax + 0.5) * size_per_bin_h
431
+
432
+ elif self.mode == 'round':
433
+ raise NotImplementedError()
434
+
435
+ else:
436
+ raise ValueError('Incorrect quantization type.')
437
+
438
+ dequantized_boxes = torch.cat(
439
+ (dequantized_xmin, dequantized_ymin,
440
+ dequantized_xmax, dequantized_ymax), dim=-1
441
+ )
442
+
443
+ return dequantized_boxes
444
+
445
+
446
+ class CoordinatesQuantizer(object):
447
+ """
448
+ Quantize coornidates (Nx2)
449
+ """
450
+
451
+ def __init__(self, mode, bins):
452
+ self.mode = mode
453
+ self.bins = bins
454
+
455
+ def quantize(self, coordinates: torch.Tensor, size):
456
+ bins_w, bins_h = self.bins # Quantization bins.
457
+ size_w, size_h = size # Original image size.
458
+ size_per_bin_w = size_w / bins_w
459
+ size_per_bin_h = size_h / bins_h
460
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
461
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
462
+
463
+ if self.mode == 'floor':
464
+ quantized_x = (x / size_per_bin_w).floor().clamp(0, bins_w - 1)
465
+ quantized_y = (y / size_per_bin_h).floor().clamp(0, bins_h - 1)
466
+
467
+ elif self.mode == 'round':
468
+ raise NotImplementedError()
469
+
470
+ else:
471
+ raise ValueError('Incorrect quantization type.')
472
+
473
+ quantized_coordinates = torch.cat(
474
+ (quantized_x, quantized_y), dim=-1
475
+ ).int()
476
+
477
+ return quantized_coordinates
478
+
479
+ def dequantize(self, coordinates: torch.Tensor, size):
480
+ bins_w, bins_h = self.bins # Quantization bins.
481
+ size_w, size_h = size # Original image size.
482
+ size_per_bin_w = size_w / bins_w
483
+ size_per_bin_h = size_h / bins_h
484
+ assert coordinates.shape[-1] == 2, 'coordinates should be shape (N, 2)'
485
+ x, y = coordinates.split(1, dim=-1) # Shape: 4 * [N, 1].
486
+
487
+ if self.mode == 'floor':
488
+ # Add 0.5 to use the center position of the bin as the coordinate.
489
+ dequantized_x = (x + 0.5) * size_per_bin_w
490
+ dequantized_y = (y + 0.5) * size_per_bin_h
491
+
492
+ elif self.mode == 'round':
493
+ raise NotImplementedError()
494
+
495
+ else:
496
+ raise ValueError('Incorrect quantization type.')
497
+
498
+ dequantized_coordinates = torch.cat(
499
+ (dequantized_x, dequantized_y), dim=-1
500
+ )
501
+
502
+ return dequantized_coordinates
503
+
504
+
505
+ class Florence2PostProcesser(object):
506
+ r"""
507
+ Florence-2 post process for converting text prediction to various tasks results.
508
+
509
+ Args:
510
+ config: A dict of configs.
511
+ tokenizer: A tokenizer for decoding text to spans.
512
+ sample config:
513
+ UNIFIED_POST_PROCESS:
514
+ # commom configs
515
+ NUM_BBOX_HEIGHT_BINS: 1000
516
+ NUM_BBOX_WIDTH_BINS: 1000
517
+ COORDINATES_HEIGHT_BINS: 1000
518
+ COORDINATES_WIDTH_BINS: 1000
519
+ # task specific configs, override the common configs
520
+ PRASE_TASKS:
521
+ - TASK_NAME: 'video_dense_caption'
522
+ PATTERN: 'r<time_(\d+)><time_(\d+)>([a-zA-Z0-9 ]+)'
523
+ SCORE_MODE: 'avg_cat_name_scores'
524
+ NUM_BINS: 100
525
+ - TASK_NAME: 'od'
526
+ PATTERN: 'r<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>([a-zA-Z0-9 ]+)'
527
+ SCORE_MODE: 'avg_cat_name_scores'
528
+
529
+ Returns:
530
+ parsed_dict (dict): A dict of parsed results.
531
+ """
532
+ def __init__(
533
+ self,
534
+ tokenizer=None
535
+ ):
536
+ parse_tasks = []
537
+ parse_task_configs = {}
538
+ config = self._create_default_config()
539
+ for task in config['PARSE_TASKS']:
540
+ parse_tasks.append(task['TASK_NAME'])
541
+ parse_task_configs[task['TASK_NAME']] = task
542
+
543
+ self.config = config
544
+ self.parse_tasks = parse_tasks
545
+ self.parse_tasks_configs = parse_task_configs
546
+
547
+ self.tokenizer = tokenizer
548
+ if self.tokenizer is not None:
549
+ self.all_special_tokens = set(self.tokenizer.all_special_tokens)
550
+
551
+ self.init_quantizers()
552
+ self.black_list_of_phrase_grounding = self._create_black_list_of_phrase_grounding()
553
+
554
+ def _create_black_list_of_phrase_grounding(self):
555
+ black_list = {}
556
+
557
+ if 'phrase_grounding' in self.parse_tasks and self.parse_tasks_configs['phrase_grounding']['FILTER_BY_BLACK_LIST']:
558
+ black_list = set(
559
+ ['it', 'I', 'me', 'mine',
560
+ 'you', 'your', 'yours',
561
+ 'he', 'him', 'his',
562
+ 'she', 'her', 'hers',
563
+ 'they', 'them', 'their', 'theirs',
564
+ 'one', 'oneself',
565
+ 'we', 'us', 'our', 'ours',
566
+ 'you', 'your', 'yours',
567
+ 'they', 'them', 'their', 'theirs',
568
+ 'mine', 'yours', 'his', 'hers', 'its',
569
+ 'ours', 'yours', 'theirs',
570
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
571
+ 'ourselves', 'yourselves', 'themselves',
572
+ 'this', 'that',
573
+ 'these', 'those',
574
+ 'who', 'whom', 'whose', 'which', 'what',
575
+ 'who', 'whom', 'whose', 'which', 'that',
576
+ 'all', 'another', 'any', 'anybody', 'anyone', 'anything',
577
+ 'each', 'everybody', 'everyone', 'everything',
578
+ 'few', 'many', 'nobody', 'none', 'one', 'several',
579
+ 'some', 'somebody', 'someone', 'something',
580
+ 'each other', 'one another',
581
+ 'myself', 'yourself', 'himself', 'herself', 'itself',
582
+ 'ourselves', 'yourselves', 'themselves',
583
+ 'the image', 'image', 'images', 'the', 'a', 'an', 'a group',
584
+ 'other objects', 'lots', 'a set',
585
+ ]
586
+ )
587
+
588
+ return black_list
589
+
590
+ def _create_default_config(self):
591
+ config = {
592
+ 'NUM_BBOX_HEIGHT_BINS': 1000,
593
+ 'NUM_BBOX_WIDTH_BINS': 1000,
594
+ 'BOX_QUANTIZATION_MODE': 'floor',
595
+ 'COORDINATES_HEIGHT_BINS': 1000,
596
+ 'COORDINATES_WIDTH_BINS': 1000,
597
+ 'COORDINATES_QUANTIZATION_MODE': 'floor',
598
+ 'PARSE_TASKS': [
599
+ {
600
+ 'TASK_NAME': 'od',
601
+ 'PATTERN': r'([a-zA-Z0-9 ]+)<loc_(\\d+)><loc_(\\d+)><loc_(\\d+)><loc_(\\d+)>',
602
+ 'SCORE_MODE': 'avg_loc_scores'
603
+ },
604
+ {
605
+ 'TASK_NAME': 'ocr',
606
+ 'PATTERN': r'(.+?)<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>',
607
+ 'AREA_THRESHOLD': 0.00
608
+ },
609
+ {
610
+ 'TASK_NAME': 'phrase_grounding',
611
+ 'FILTER_BY_BLACK_LIST': True
612
+ },
613
+ {
614
+ 'TASK_NAME': 'pure_text',
615
+ },
616
+ {
617
+ 'TASK_NAME': 'description_with_bboxes',
618
+ 'SCORE_MODE': 'avg_loc_scores'
619
+ },
620
+ {
621
+ 'TASK_NAME': 'description_with_polygons',
622
+ },
623
+ {
624
+ 'TASK_NAME': 'polygons',
625
+ },
626
+ {
627
+ 'TASK_NAME': 'bboxes',
628
+ },
629
+ {
630
+ 'TASK_NAME': 'description_with_bboxes_or_polygons',
631
+ }
632
+ ]
633
+ }
634
+
635
+ return config
636
+
637
+ def init_quantizers(self):
638
+ # we have box_quantizer (od, grounding) and coordinates_quantizer (ocr, referring_segmentation)
639
+ num_bbox_height_bins = self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
640
+ num_bbox_width_bins = self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
641
+ box_quantization_mode = self.config.get('BOX_QUANTIZATION_MODE', 'floor')
642
+ self.box_quantizer = BoxQuantizer(
643
+ box_quantization_mode,
644
+ (num_bbox_width_bins, num_bbox_height_bins),
645
+ )
646
+
647
+ num_bbox_height_bins = self.config['COORDINATES_HEIGHT_BINS'] if 'COORDINATES_HEIGHT_BINS' in self.config else self.config.get('NUM_BBOX_HEIGHT_BINS', 1000)
648
+ num_bbox_width_bins = self.config['COORDINATES_WIDTH_BINS'] if 'COORDINATES_WIDTH_BINS' in self.config else self.config.get('NUM_BBOX_WIDTH_BINS', 1000)
649
+ box_quantization_mode = self.config.get('COORDINATES_QUANTIZATION_MODE') if 'COORDINATES_QUANTIZATION_MODE' in self.config else self.config.get('BOX_QUANTIZATION_MODE', 'floor')
650
+ self.coordinates_quantizer = CoordinatesQuantizer(
651
+ box_quantization_mode,
652
+ (num_bbox_width_bins, num_bbox_height_bins),
653
+ )
654
+
655
+ def decode_with_spans(self, tokenizer, token_ids):
656
+ filtered_tokens = tokenizer.convert_ids_to_tokens(
657
+ token_ids, skip_special_tokens=False)
658
+ assert len(filtered_tokens) == len(token_ids)
659
+ sub_texts = []
660
+ for token in filtered_tokens:
661
+ if token in self.all_special_tokens:
662
+ sub_texts.append(token)
663
+ else:
664
+ if isinstance(tokenizer, (BartTokenizer, BartTokenizerFast)):
665
+ sub_text = tokenizer.convert_tokens_to_string([token])
666
+ else:
667
+ raise ValueError(f'type {type(tokenizer)} not supported')
668
+ sub_texts.append(sub_text)
669
+
670
+ text = ''
671
+ spans = []
672
+ for sub_text in sub_texts:
673
+ span = (len(text), len(text) + len(sub_text)) # [start index, end index).
674
+ text += sub_text
675
+ spans.append(span)
676
+ return text, spans
677
+
678
+ def parse_od_from_text_and_spans(
679
+ self,
680
+ text,
681
+ pattern,
682
+ image_size,
683
+ phrase_centric=False
684
+ ):
685
+ parsed = list(re.finditer(pattern, text))
686
+
687
+ instances = []
688
+ for i in range(len(parsed)):
689
+ # Prepare instance.
690
+ instance = {}
691
+
692
+ if phrase_centric:
693
+ bbox_bins = [int(parsed[i].group(j)) for j in range(2, 6)]
694
+ else:
695
+ bbox_bins = [int(parsed[i].group(j)) for j in range(1, 5)]
696
+ instance['bbox'] = self.box_quantizer.dequantize(
697
+ boxes=torch.tensor(bbox_bins),
698
+ size=image_size
699
+ ).tolist()
700
+
701
+ if phrase_centric:
702
+ instance['cat_name'] = parsed[i].group(1).lower().strip()
703
+ else:
704
+ instance['cat_name'] = parsed[i].group(5).lower().strip()
705
+ instances.append(instance)
706
+
707
+ return instances
708
+
709
+ def parse_ocr_from_text_and_spans(self,
710
+ text,
711
+ pattern,
712
+ image_size,
713
+ area_threshold=-1.0,
714
+ ):
715
+ bboxes = []
716
+ labels = []
717
+ text = text.replace('<s>', '')
718
+ # ocr with regions
719
+ parsed = re.findall(pattern, text)
720
+ instances = []
721
+ image_width, image_height = image_size
722
+
723
+ for ocr_line in parsed:
724
+ ocr_content = ocr_line[0]
725
+ quad_box = ocr_line[1:]
726
+ quad_box = [int(i) for i in quad_box]
727
+ quad_box = self.coordinates_quantizer.dequantize(
728
+ torch.tensor(np.array(quad_box).reshape(-1, 2)),
729
+ size=image_size
730
+ ).reshape(-1).tolist()
731
+
732
+ if area_threshold > 0:
733
+ x_coords = [i for i in quad_box[0::2]]
734
+ y_coords = [i for i in quad_box[1::2]]
735
+
736
+ # apply the Shoelace formula
737
+ area = 0.5 * abs(sum(x_coords[i] * y_coords[i + 1] - x_coords[i + 1] * y_coords[i] for i in range(4 - 1)))
738
+
739
+ if area < (image_width * image_height) * area_threshold:
740
+ continue
741
+
742
+ bboxes.append(quad_box)
743
+ labels.append(ocr_content)
744
+ instances.append({
745
+ 'quad_box': quad_box,
746
+ 'text': ocr_content,
747
+ })
748
+ return instances
749
+
750
+ def parse_phrase_grounding_from_text_and_spans(self, text, pattern, image_size):
751
+ # ignore <s> </s> and <pad>
752
+ cur_span = 0
753
+ if text.startswith('<s>'):
754
+ cur_span += 3
755
+
756
+ text = text.replace('<s>', '')
757
+ text = text.replace('</s>', '')
758
+ text = text.replace('<pad>', '')
759
+
760
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
761
+ phrases = re.findall(pattern, text)
762
+
763
+ # pattern should be text pattern and od pattern
764
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
765
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
766
+
767
+ instances = []
768
+ for pharse_text in phrases:
769
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
770
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
771
+
772
+ if phrase_text_strip == '':
773
+ cur_span += len(pharse_text)
774
+ continue
775
+
776
+ # Prepare instance.
777
+ instance = {}
778
+
779
+ # parse phrase, get string
780
+ phrase = re.search(pattern, phrase_text_strip)
781
+ if phrase is None:
782
+ cur_span += len(pharse_text)
783
+ continue
784
+
785
+ # parse bboxes by box_pattern
786
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
787
+ if len(bboxes_parsed) == 0:
788
+ cur_span += len(pharse_text)
789
+ continue
790
+
791
+ phrase = phrase.group()
792
+ # remove leading and trailing spaces
793
+ phrase = phrase.strip()
794
+
795
+ if phrase in self.black_list_of_phrase_grounding:
796
+ cur_span += len(pharse_text)
797
+ continue
798
+
799
+ # a list of list
800
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
801
+ instance['bbox'] = self.box_quantizer.dequantize(
802
+ boxes=torch.tensor(bbox_bins),
803
+ size=image_size
804
+ ).tolist()
805
+
806
+ # exclude non-ascii characters
807
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
808
+ instance['cat_name'] = phrase
809
+
810
+ instances.append(instance)
811
+
812
+ return instances
813
+
814
+ def parse_description_with_bboxes_from_text_and_spans(
815
+ self,
816
+ text,
817
+ spans=None,
818
+ scores=None,
819
+ score_mode=None,
820
+ pattern=None,
821
+ image_size=None,
822
+ allow_empty_phrase=False
823
+ ):
824
+ def find_matched_token_indices(cur_span, token_spans):
825
+ inds = []
826
+ for i, token_span in enumerate(token_spans):
827
+ if not (token_span[1] <= cur_span[0] or token_span[0] >= cur_span[1]):
828
+ inds.append(i)
829
+ return inds
830
+
831
+ cur_span = 0
832
+ if text.startswith('<s>'):
833
+ cur_span += 3
834
+
835
+ text = text.replace('<s>', '')
836
+ text = text.replace('</s>', '')
837
+ text = text.replace('<pad>', '')
838
+
839
+ if allow_empty_phrase:
840
+ pattern = rf"(?:(?:<loc_\d+>){{4,}})"
841
+ else:
842
+ pattern = r"([^<]+(?:<loc_\d+>){4,})"
843
+ phrases = re.findall(pattern, text)
844
+
845
+ # pattern should be text pattern and od pattern
846
+ pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_)'
847
+ box_pattern = r'<loc_(\d+)><loc_(\d+)><loc_(\d+)><loc_(\d+)>'
848
+
849
+ instances = []
850
+ for pharse_text in phrases:
851
+ phrase_text_strip = pharse_text.replace('<ground>', '', 1)
852
+ phrase_text_strip = pharse_text.replace('<obj>', '', 1)
853
+
854
+ if phrase_text_strip == '' and not allow_empty_phrase:
855
+ cur_span += len(pharse_text)
856
+ continue
857
+
858
+ # parse phrase, get string
859
+ phrase = re.search(pattern, phrase_text_strip)
860
+ if phrase is None:
861
+ cur_span += len(pharse_text)
862
+ continue
863
+
864
+ phrase_span = phrase.span()
865
+ phrase = phrase.group()
866
+ # remove leading and trailing spaces
867
+ phrase = phrase.strip()
868
+
869
+ # parse bboxes by box_pattern
870
+ bboxes_parsed = list(re.finditer(box_pattern, pharse_text))
871
+ if len(bboxes_parsed) == 0:
872
+ cur_span += len(pharse_text)
873
+ continue
874
+
875
+ # a list of list
876
+ bbox_bins = [[int(_bboxes_parsed.group(j)) for j in range(1, 5)] for _bboxes_parsed in bboxes_parsed]
877
+
878
+ bboxes = self.box_quantizer.dequantize(
879
+ boxes=torch.tensor(bbox_bins),
880
+ size=image_size
881
+ ).tolist()
882
+
883
+ if score_mode == 'avg_loc_scores':
884
+ if spans is None or scores is None:
885
+ all_scores = None
886
+ else:
887
+ bbox_end_spans = [_bboxes_parsed.span(0) for _bboxes_parsed in bboxes_parsed]
888
+ all_scores = []
889
+ for _spans in bbox_end_spans:
890
+ token_inds = find_matched_token_indices((_spans[0] + cur_span, _spans[1]+ cur_span), spans)
891
+ loc_scores = [scores[token_i] for token_i in token_inds]
892
+ score = sum(loc_scores) / len(loc_scores)
893
+ all_scores.append(score)
894
+ elif score_mode == 'avg_cat_name_scores':
895
+ if spans is None or scores is None:
896
+ all_scores = None
897
+ else:
898
+ cat_name_token_inds = find_matched_token_indices((phrase_span[0] + cur_span, phrase_span[1]+cur_span), spans)
899
+ cat_name_scores = [scores[token_i] for token_i in cat_name_token_inds]
900
+ score = sum(cat_name_scores) / len(cat_name_scores)
901
+ all_scores = [score] * len(bboxes)
902
+ elif score_mode is None:
903
+ all_scores = None
904
+ else:
905
+ raise ValueError('Unknown score mode: {}'.format(score_mode))
906
+
907
+ phrase = phrase.encode('ascii',errors='ignore').decode('ascii')
908
+ for _idx, _bboxes in enumerate(bboxes):
909
+ # Prepare instance.
910
+ instance = {}
911
+ instance['bbox'] = _bboxes
912
+ # exclude non-ascii characters
913
+ instance['cat_name'] = phrase
914
+ if all_scores is not None:
915
+ instance['score'] = math.exp(all_scores[_idx])
916
+ instances.append(instance)
917
+
918
+ cur_span += len(pharse_text)
919
+
920
+ return instances
921
+
922
+ def parse_description_with_polygons_from_text_and_spans(self, text, pattern, image_size,
923
+ allow_empty_phrase=False,
924
+ polygon_sep_token='<sep>',
925
+ polygon_start_token='<poly>',
926
+ polygon_end_token='</poly>',
927
+ with_box_at_start=False,
928
+ ):
929
+
930
+ # ref_seg format: '<expression><x1><y1><x2><y2><><><sep><><><><>'
931
+ # ignore <s> </s> and <pad>
932
+
933
+ text = text.replace('<s>', '')
934
+ text = text.replace('</s>', '')
935
+ text = text.replace('<pad>', '')
936
+
937
+ if allow_empty_phrase:
938
+ pattern = rf"(?:(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
939
+ else:
940
+ # [^<]+: This part matches one or more characters that are not the < symbol.
941
+ # The ^ inside the square brackets [] is a negation, meaning it matches anything except <.
942
+ #
943
+ pattern = rf"([^<]+(?:<loc_\d+>|{re.escape(polygon_sep_token)}|{re.escape(polygon_start_token)}|{re.escape(polygon_end_token)}){{4,}})"
944
+ phrases = re.findall(pattern, text)
945
+
946
+ phrase_string_pattern = r'^\s*(.*?)(?=<od>|</od>|<box>|</box>|<bbox>|</bbox>|<loc_|<poly>)'
947
+ box_pattern = rf'((?:<loc_\d+>)+)(?:{re.escape(polygon_sep_token)}|$)'
948
+
949
+ # one polygons instance is separated by polygon_start_token and polygon_end_token
950
+ polygons_instance_pattern = rf'{re.escape(polygon_start_token)}(.*?){re.escape(polygon_end_token)}'
951
+
952
+ instances = []
953
+ for phrase_text in phrases:
954
+
955
+ # exclude loc_\d+>
956
+ # need to get span if want to include category score
957
+ phrase_text_strip = re.sub(r'^loc_\d+>', '', phrase_text, count=1)
958
+
959
+ # phrase = phrase.replace('<poly>', '')
960
+ # phrase = phrase.replace('poly>', '')
961
+
962
+ if phrase_text_strip == '' and not allow_empty_phrase:
963
+ continue
964
+
965
+
966
+ # parse phrase, get string
967
+ phrase = re.search(phrase_string_pattern, phrase_text_strip)
968
+ if phrase is None:
969
+ continue
970
+ phrase = phrase.group()
971
+ # remove leading and trailing spaces
972
+ phrase = phrase.strip()
973
+
974
+ # parse bboxes by box_pattern
975
+
976
+ # split by polygon_start_token and polygon_end_token first using polygons_instance_pattern
977
+ if polygon_start_token in phrase_text and polygon_end_token in phrase_text:
978
+ polygons_instances_parsed = list(re.finditer(polygons_instance_pattern, phrase_text))
979
+ else:
980
+ polygons_instances_parsed = [phrase_text]
981
+
982
+ for _polygons_instances_parsed in polygons_instances_parsed:
983
+ # Prepare instance.
984
+ instance = {}
985
+
986
+ # polygons_parsed= list(re.finditer(box_pattern, phrase_text))
987
+ if isinstance(_polygons_instances_parsed, str):
988
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed))
989
+ else:
990
+ polygons_parsed= list(re.finditer(box_pattern, _polygons_instances_parsed.group(1)))
991
+ if len(polygons_parsed) == 0:
992
+ continue
993
+
994
+ # a list of list (polygon)
995
+ bbox = []
996
+ polygons = []
997
+ for _polygon_parsed in polygons_parsed:
998
+ # group 1: whole <loc_\d+>...</loc_\d+>
999
+ _polygon = _polygon_parsed.group(1)
1000
+ # parse into list of int
1001
+ _polygon = [int(_loc_parsed.group(1)) for _loc_parsed in re.finditer(r'<loc_(\d+)>', _polygon)]
1002
+ if with_box_at_start and len(bbox) == 0:
1003
+ if len(_polygon) > 4:
1004
+ # no valid bbox prediction
1005
+ bbox = _polygon[:4]
1006
+ _polygon = _polygon[4:]
1007
+ else:
1008
+ bbox = [0, 0, 0, 0]
1009
+ # abandon last element if is not paired
1010
+ if len(_polygon) % 2 == 1:
1011
+ _polygon = _polygon[:-1]
1012
+
1013
+ # reshape into (n, 2)
1014
+ _polygon = self.coordinates_quantizer.dequantize(
1015
+ torch.tensor(np.array(_polygon).reshape(-1, 2)),
1016
+ size=image_size
1017
+ ).reshape(-1).tolist()
1018
+ # reshape back
1019
+ polygons.append(_polygon)
1020
+
1021
+ instance['cat_name'] = phrase
1022
+ instance['polygons'] = polygons
1023
+ if len(bbox) != 0:
1024
+ instance['bbox'] = self.box_quantizer.dequantize(
1025
+ boxes=torch.tensor([bbox]),
1026
+ size=image_size
1027
+ ).tolist()[0]
1028
+
1029
+ instances.append(instance)
1030
+
1031
+ return instances
1032
+
1033
+ def __call__(
1034
+ self,
1035
+ text=None,
1036
+ sequence=None,
1037
+ transition_beam_score=None,
1038
+ image_size=None,
1039
+ parse_tasks=None,
1040
+ ):
1041
+ """
1042
+ Args:
1043
+ text: model outputs
1044
+ image_size: (width, height)
1045
+ parse_tasks: a list of tasks to parse, if None, parse all tasks.
1046
+
1047
+ """
1048
+ if parse_tasks is not None:
1049
+ if isinstance(parse_tasks, str):
1050
+ parse_tasks = [parse_tasks]
1051
+ for _parse_task in parse_tasks:
1052
+ assert _parse_task in self.parse_tasks, f'parse task {_parse_task} not supported'
1053
+
1054
+ # sequence or text should be provided
1055
+ assert sequence is not None or text is not None, 'sequence or text should be provided'
1056
+ assert sequence is None or text is None, 'only one of sequence and text should be provided'
1057
+
1058
+ if sequence is not None:
1059
+ sequence = sequence.tolist()[1:]
1060
+ text, spans = self.decode_with_spans(self.tokenizer, sequence)
1061
+ if transition_beam_score is not None:
1062
+ transition_beam_score = transition_beam_score.tolist()
1063
+ assert len(sequence) == len(transition_beam_score)
1064
+ else:
1065
+ spans = None
1066
+ transition_beam_score = None
1067
+
1068
+ parsed_dict = {
1069
+ 'text': text
1070
+ }
1071
+
1072
+ for task in self.parse_tasks:
1073
+ if parse_tasks is not None and task not in parse_tasks:
1074
+ continue
1075
+
1076
+ pattern = self.parse_tasks_configs[task].get('PATTERN', None)
1077
+ score_mode = self.parse_tasks_configs[task].get('SCORE_MODE', None)
1078
+
1079
+ if task == 'ocr':
1080
+ instances = self.parse_ocr_from_text_and_spans(
1081
+ text,
1082
+ pattern=pattern,
1083
+ image_size=image_size,
1084
+ area_threshold=self.parse_tasks_configs[task].get('AREA_THRESHOLD', 0.0),
1085
+ )
1086
+ parsed_dict['ocr'] = instances
1087
+ elif task == 'phrase_grounding':
1088
+ instances = self.parse_phrase_grounding_from_text_and_spans(
1089
+ text,
1090
+ pattern=pattern,
1091
+ image_size=image_size,
1092
+ )
1093
+ parsed_dict['phrase_grounding'] = instances
1094
+ elif task == 'pure_text':
1095
+ parsed_dict['pure_text'] = text
1096
+ elif task == 'description_with_bboxes':
1097
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1098
+ text,
1099
+ spans=spans,
1100
+ scores=transition_beam_score,
1101
+ score_mode=score_mode,
1102
+ pattern=pattern,
1103
+ image_size=image_size,
1104
+ )
1105
+ parsed_dict['description_with_bboxes'] = instances
1106
+ elif task == 'description_with_polygons':
1107
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1108
+ text,
1109
+ pattern=pattern,
1110
+ image_size=image_size,
1111
+ )
1112
+ parsed_dict['description_with_polygons'] = instances
1113
+ elif task == 'polygons':
1114
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1115
+ text,
1116
+ pattern=pattern,
1117
+ image_size=image_size,
1118
+ allow_empty_phrase=True,
1119
+ )
1120
+ parsed_dict['polygons'] = instances
1121
+ elif task == 'bboxes':
1122
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1123
+ text,
1124
+ pattern=pattern,
1125
+ image_size=image_size,
1126
+ allow_empty_phrase=True,
1127
+ )
1128
+ parsed_dict['bboxes'] = instances
1129
+ elif task == 'description_with_bboxes_or_polygons':
1130
+ if '<poly>' in text:
1131
+ # only support either polygons or bboxes, not both at the same time
1132
+ instances = self.parse_description_with_polygons_from_text_and_spans(
1133
+ text,
1134
+ pattern=pattern,
1135
+ image_size=image_size,
1136
+ )
1137
+ else:
1138
+ instances = self.parse_description_with_bboxes_from_text_and_spans(
1139
+ text,
1140
+ pattern=pattern,
1141
+ image_size=image_size,
1142
+ )
1143
+ parsed_dict['description_with_bboxes_or_polygons'] = instances
1144
+ else:
1145
+ raise ValueError("task {} is not supported".format(task))
1146
+
1147
+ return parsed_dict
eval/grounded_sam/florence2/tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
eval/grounded_sam/florence2/tokenizer_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "model_max_length": 1024
3
+ }
4
+
eval/grounded_sam/florence2/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
eval/grounded_sam/grounded_sam2_florence2_autolabel_pipeline.py ADDED
@@ -0,0 +1,361 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import cv2
3
+ import torch
4
+ import argparse
5
+ import numpy as np
6
+ import supervision as sv
7
+ from PIL import Image
8
+ import gc
9
+ import sys
10
+
11
+ from eval.grounded_sam.florence2.modeling_florence2 import Florence2ForConditionalGeneration
12
+ from eval.grounded_sam.florence2.processing_florence2 import Florence2Processor
13
+ from eval.grounded_sam.sam2.build_sam import build_sam2
14
+ from eval.grounded_sam.sam2.sam2_image_predictor import SAM2ImagePredictor
15
+
16
+
17
+ class FlorenceSAM:
18
+
19
+ # official usage: https://huggingface.co/microsoft/Florence-2-large/blob/main/sample_inference.ipynb
20
+ TASK_PROMPT = {
21
+ "original": "<GIVEN>",
22
+ "caption": "<CAPTION>",
23
+ "detailed_caption": "<DETAILED_CAPTION>",
24
+ "more_detailed_caption": "<MORE_DETAILED_CAPTION>",
25
+ "object_detection": "<OD>",
26
+ "dense_region_caption": "<DENSE_REGION_CAPTION>",
27
+ "region_proposal": "<REGION_PROPOSAL>",
28
+ "phrase_grounding": "<CAPTION_TO_PHRASE_GROUNDING>",
29
+ "referring_expression_segmentation": "<REFERRING_EXPRESSION_SEGMENTATION>",
30
+ "region_to_segmentation": "<REGION_TO_SEGMENTATION>",
31
+ "open_vocabulary_detection": "<OPEN_VOCABULARY_DETECTION>",
32
+ "region_to_category": "<REGION_TO_CATEGORY>",
33
+ "region_to_description": "<REGION_TO_DESCRIPTION>",
34
+ "ocr": "<OCR>",
35
+ "ocr_with_region": "<OCR_WITH_REGION>",
36
+ }
37
+
38
+
39
+ def __init__(self, device):
40
+ """
41
+ Init Florence-2 and SAM 2 Model
42
+ """
43
+ print(f"[{self}] init on device {device}")
44
+ self.device = torch.device(device)
45
+
46
+ # with torch.autocast(device_type="cuda", dtype=torch.float32).__enter__()
47
+ # self.torch_dtype = torch.float32
48
+ # self.torch_dtype = torch.float16
49
+ self.torch_dtype = torch.bfloat16
50
+
51
+ try:
52
+ if torch.cuda.get_device_properties(0).major >= 8:
53
+ # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
54
+ torch.backends.cuda.matmul.allow_tf32 = True
55
+ torch.backends.cudnn.allow_tf32 = True
56
+ # self.torch_dtype = torch.bfloat16
57
+ # else:
58
+ # self.torch_dtype = torch.float16
59
+ except:
60
+ self.torch_dtype = torch.bfloat16
61
+
62
+ FLORENCE2_MODEL_ID = os.getenv('FLORENCE2_MODEL_PATH', "microsoft/Florence-2-large")
63
+ SAM2_CHECKPOINT = os.getenv('SAM2_MODEL_PATH')
64
+ SAM2_CONFIG = "configs/sam2.1/sam2.1_hiera_l.yaml"
65
+
66
+ self.florence2_model = Florence2ForConditionalGeneration.from_pretrained(
67
+ FLORENCE2_MODEL_ID,
68
+ torch_dtype=self.torch_dtype,
69
+ ).eval().to(self.device)
70
+ self.florence2_processor = Florence2Processor.from_pretrained(
71
+ FLORENCE2_MODEL_ID,
72
+ )
73
+ sam2_model = build_sam2(SAM2_CONFIG, SAM2_CHECKPOINT, device=self.device)
74
+ self.sam2_predictor = SAM2ImagePredictor(sam2_model)
75
+
76
+ def __str__(self):
77
+ return "FlorenceSAM"
78
+
79
+
80
+ @torch.no_grad()
81
+ def run_florence2(self, task_prompt, text_input, image):
82
+ model = self.florence2_model
83
+ processor = self.florence2_processor
84
+ device = self.device
85
+ assert model is not None, "You should pass the init florence-2 model here"
86
+ assert processor is not None, "You should set florence-2 processor here"
87
+
88
+ with torch.autocast(device_type="cuda", dtype=torch.float32):
89
+ if text_input is None:
90
+ prompt = task_prompt
91
+ else:
92
+ prompt = task_prompt + text_input
93
+
94
+ inputs = processor(
95
+ text=prompt, images=image,
96
+ max_length=1024,
97
+ truncation=True,
98
+ return_tensors="pt",
99
+ ).to(device, self.torch_dtype)
100
+ # inputs = processor(text=prompt, images=image, return_tensors="pt").to(device, self.torch_dtype)
101
+ generated_ids = model.generate(
102
+ input_ids=inputs["input_ids"].to(device),
103
+ pixel_values=inputs["pixel_values"].to(device),
104
+ # max_new_tokens=1024,
105
+ max_new_tokens=768,
106
+ early_stopping=False,
107
+ do_sample=False,
108
+ num_beams=3,
109
+ )
110
+ generated_text = processor.batch_decode(generated_ids, skip_special_tokens=False)[0]
111
+ parsed_answer = processor.post_process_generation(
112
+ generated_text,
113
+ task=task_prompt,
114
+ image_size=(image.width, image.height)
115
+ )
116
+ return parsed_answer
117
+
118
+
119
+
120
+ def caption(self, image, caption_task_prompt='<CAPTION>'):
121
+ assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>"]
122
+ caption_results = self.run_florence2(caption_task_prompt, None, image)
123
+ text_input = caption_results[caption_task_prompt]
124
+ caption = text_input
125
+ return caption
126
+
127
+
128
+ def segmentation(self, image, input_boxes, seg_model="sam"):
129
+ if seg_model == "sam":
130
+ with torch.inference_mode(), torch.autocast("cuda", dtype=torch.float32):
131
+ sam2_predictor = self.sam2_predictor
132
+ sam2_predictor.set_image(np.array(image))
133
+ masks, scores, logits = sam2_predictor.predict(
134
+ point_coords=None,
135
+ point_labels=None,
136
+ box=input_boxes,
137
+ multimask_output=False,
138
+ )
139
+ if masks.ndim == 4:
140
+ masks = masks.squeeze(1)
141
+ if scores.ndim == 2:
142
+ scores = scores.squeeze(1)
143
+ else:
144
+ raise NotImplementedError()
145
+
146
+ return masks, scores
147
+
148
+ def post_process_results(self, image, caption, labels, detections, output_dir=None):
149
+ result_dict = {
150
+ "caption": caption,
151
+ "instance_images": [],
152
+ "instance_labels": [],
153
+ "instance_bboxes": [],
154
+ "instance_mask_scores": [],
155
+ }
156
+
157
+ if detections is None:
158
+ return detections, result_dict
159
+
160
+ if output_dir is not None:
161
+ os.makedirs(output_dir, exist_ok=True)
162
+
163
+ cv_image = cv2.cvtColor(np.array(image), cv2.COLOR_RGB2BGR)
164
+
165
+ box_annotator = sv.BoxAnnotator()
166
+ annotated_frame = box_annotator.annotate(scene=cv_image.copy(), detections=detections)
167
+
168
+ label_annotator = sv.LabelAnnotator(text_position=sv.Position.CENTER)
169
+ annotated_frame = label_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
170
+ if output_dir is not None:
171
+ cv2.imwrite(os.path.join(output_dir, "detections.jpg"), annotated_frame)
172
+
173
+ mask_annotator = sv.MaskAnnotator()
174
+ annotated_frame = mask_annotator.annotate(scene=annotated_frame, detections=detections)
175
+ if output_dir is not None:
176
+ cv2.imwrite(os.path.join(output_dir, "masks.jpg"), annotated_frame)
177
+
178
+ for detection in detections:
179
+ xyxy, mask, confidence, class_id, tracker_id, data = detection
180
+
181
+ label = labels[class_id]
182
+ cropped_img = sv.crop_image(image=cv_image, xyxy=xyxy)
183
+ if output_dir is not None:
184
+ cv2.imwrite(os.path.join(output_dir, f"cropped_image_{label}.jpg"), cropped_img)
185
+
186
+ if mask is None:
187
+ result_dict["instance_mask_scores"].append(0)
188
+ result_dict["instance_images"].append(cropped_img)
189
+ else:
190
+ mask = np.repeat(mask[..., np.newaxis], 3, axis=-1)
191
+ masked_img = np.where(mask, cv_image, 255)
192
+ cropped_masked_img = sv.crop_image(image=masked_img, xyxy=xyxy)
193
+ result_dict["instance_mask_scores"].append(confidence.item())
194
+ result_dict["instance_images"].append(cropped_masked_img)
195
+
196
+ result_dict["instance_labels"].append(label)
197
+ result_dict["instance_bboxes"].append(xyxy)
198
+ if output_dir is not None:
199
+ cv2.imwrite(os.path.join(output_dir, f"masked_image_{label}.jpg"), cropped_masked_img)
200
+
201
+ torch.cuda.empty_cache()
202
+ gc.collect()
203
+ return detections, result_dict
204
+
205
+ def caption_phrase_grounding_and_segmentation(
206
+ self,
207
+ image,
208
+ seg_model="sam",
209
+ caption_task_prompt='<CAPTION>',
210
+ original_caption=None,
211
+ output_dir=None
212
+ ):
213
+
214
+ assert caption_task_prompt in ["<CAPTION>", "<DETAILED_CAPTION>", "<MORE_DETAILED_CAPTION>", "<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]
215
+ assert seg_model in ["sam", "florence2"]
216
+
217
+ # image caption
218
+ if caption_task_prompt in ["<GIVEN>", "<OPEN_VOCABULARY_DETECTION>"]:
219
+ assert original_caption is not None
220
+ caption = original_caption
221
+ else:
222
+ caption_results = self.run_florence2(caption_task_prompt, None, image)
223
+ text_input = caption_results[caption_task_prompt]
224
+ caption = text_input
225
+
226
+ # phrase grounding
227
+ grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', caption, image)['<CAPTION_TO_PHRASE_GROUNDING>']
228
+ input_boxes = np.array(grounding_results["bboxes"])
229
+ class_names = grounding_results["labels"]
230
+ class_ids = np.array(list(range(len(class_names))))
231
+
232
+ # segmentation
233
+ masks, scores = self.segmentation(image, input_boxes, seg_model)
234
+
235
+ labels = [f"{class_name}" for class_name in class_names]
236
+ detections = sv.Detections(
237
+ xyxy=input_boxes,
238
+ mask=masks.astype(bool),
239
+ class_id=class_ids,
240
+ confidence=scores,
241
+ )
242
+
243
+ return self.post_process_results(image, caption, labels, detections, output_dir)
244
+
245
+ def od_grounding_and_segmentation(
246
+ self,
247
+ image,
248
+ text_input,
249
+ seg_model="sam",
250
+ output_dir=None
251
+ ):
252
+ assert seg_model in ["sam", "florence2"]
253
+
254
+ # od grounding
255
+ grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
256
+ if len(grounding_results["bboxes"]) == 0:
257
+ detections = None
258
+ labels = []
259
+ else:
260
+ input_boxes = np.array(grounding_results["bboxes"])
261
+ class_names = grounding_results["bboxes_labels"]
262
+ class_ids = np.array(list(range(len(class_names))))
263
+
264
+ # segmentation
265
+ masks, scores = self.segmentation(image, input_boxes, seg_model)
266
+
267
+ labels = [f"{class_name}" for class_name in class_names]
268
+ detections = sv.Detections(
269
+ xyxy=input_boxes,
270
+ mask=masks.astype(bool),
271
+ class_id=class_ids,
272
+ confidence=scores,
273
+ )
274
+
275
+ return self.post_process_results(image, text_input, labels, detections, output_dir)
276
+
277
+ def od_grounding(
278
+ self,
279
+ image,
280
+ text_input,
281
+ output_dir=None
282
+ ):
283
+
284
+ # od grounding
285
+ grounding_results = self.run_florence2('<OPEN_VOCABULARY_DETECTION>', text_input, image)['<OPEN_VOCABULARY_DETECTION>']
286
+ if len(grounding_results["bboxes"]) == 0:
287
+ detections = None
288
+ labels = []
289
+ else:
290
+ input_boxes = np.array(grounding_results["bboxes"])
291
+ class_names = grounding_results["bboxes_labels"]
292
+ class_ids = np.array(list(range(len(class_names))))
293
+
294
+ labels = [f"{class_name}" for class_name in class_names]
295
+ detections = sv.Detections(
296
+ xyxy=input_boxes,
297
+ class_id=class_ids,
298
+ )
299
+
300
+ return self.post_process_results(image, text_input, labels, detections, output_dir)
301
+
302
+ def phrase_grounding_and_segmentation(
303
+ self,
304
+ image,
305
+ text_input,
306
+ seg_model="sam",
307
+ output_dir=None
308
+ ):
309
+ assert seg_model in ["sam", "florence2"]
310
+
311
+ # phrase grounding
312
+ grounding_results = self.run_florence2('<CAPTION_TO_PHRASE_GROUNDING>', text_input, image)['<CAPTION_TO_PHRASE_GROUNDING>']
313
+ input_boxes = np.array(grounding_results["bboxes"])
314
+ class_names = grounding_results["labels"]
315
+ # print(f"[phrase_grounding_and_segmentation] input_label={text_input}, output_label={class_names}")
316
+ class_ids = np.array(list(range(len(class_names))))
317
+
318
+ # segmentation
319
+ masks, scores = self.segmentation(image, input_boxes, seg_model)
320
+
321
+ labels = [f"{class_name}" for class_name in class_names]
322
+ detections = sv.Detections(
323
+ xyxy=input_boxes,
324
+ mask=masks.astype(bool),
325
+ class_id=class_ids,
326
+ confidence=scores,
327
+ )
328
+
329
+ return self.post_process_results(image, text_input, labels, detections, output_dir)
330
+
331
+
332
+ if __name__ == "__main__":
333
+
334
+ parser = argparse.ArgumentParser("Grounded SAM 2 Florence-2 Demos", add_help=True)
335
+ parser.add_argument("--image_path", type=str, default="./notebooks/images/cars.jpg", required=True, help="path to image file")
336
+ parser.add_argument("--caption_type", type=str, default="caption", required=False, help="granularity of caption")
337
+ args = parser.parse_args()
338
+
339
+
340
+
341
+ # IMAGE_PATH = args.image_path
342
+ PIPELINE = "caption_to_phrase_grounding"
343
+ CAPTION_TYPE = args.caption_type
344
+ assert CAPTION_TYPE in ["caption", "detailed_caption", "more_detailed_caption", "original"]
345
+
346
+ print(f"Running pipeline: {PIPELINE} now.")
347
+
348
+ pipeline = FlorenceSAM("cuda:0")
349
+
350
+ from glob import glob
351
+ from tqdm import tqdm
352
+ for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/notebooks/images/*") * 3):
353
+ # for image_path in tqdm(glob("/mnt/bn/lq-prompt-alignment/personal/chenbowen/code/IPVerse/prompt_alignment/Grounded-SAM-2/outputs/gcg_pipeline/00001.tar_debug/*.png")):
354
+ print(pipeline.TASK_PROMPT, CAPTION_TYPE)
355
+ image = Image.open(image_path).convert("RGB")
356
+ pipeline.caption_phrase_grounding_and_segmentation(
357
+ image=image,
358
+ seg_model="sam",
359
+ caption_task_prompt=pipeline.TASK_PROMPT[CAPTION_TYPE],
360
+ output_dir=f"./outputs/{os.path.basename(image_path)}"
361
+ )
eval/grounded_sam/sam2/__init__.py ADDED
@@ -0,0 +1,11 @@
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ from hydra import initialize_config_module
8
+ from hydra.core.global_hydra import GlobalHydra
9
+
10
+ if not GlobalHydra.instance().is_initialized():
11
+ initialize_config_module("sam2", version_base="1.2")
eval/grounded_sam/sam2/automatic_mask_generator.py ADDED
@@ -0,0 +1,454 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ # Adapted from https://github.com/facebookresearch/segment-anything/blob/main/segment_anything/automatic_mask_generator.py
8
+ from typing import Any, Dict, List, Optional, Tuple
9
+
10
+ import numpy as np
11
+ import torch
12
+ from torchvision.ops.boxes import batched_nms, box_area # type: ignore
13
+
14
+ from sam2.modeling.sam2_base import SAM2Base
15
+ from sam2.sam2_image_predictor import SAM2ImagePredictor
16
+ from sam2.utils.amg import (
17
+ area_from_rle,
18
+ batch_iterator,
19
+ batched_mask_to_box,
20
+ box_xyxy_to_xywh,
21
+ build_all_layer_point_grids,
22
+ calculate_stability_score,
23
+ coco_encode_rle,
24
+ generate_crop_boxes,
25
+ is_box_near_crop_edge,
26
+ mask_to_rle_pytorch,
27
+ MaskData,
28
+ remove_small_regions,
29
+ rle_to_mask,
30
+ uncrop_boxes_xyxy,
31
+ uncrop_masks,
32
+ uncrop_points,
33
+ )
34
+
35
+
36
+ class SAM2AutomaticMaskGenerator:
37
+ def __init__(
38
+ self,
39
+ model: SAM2Base,
40
+ points_per_side: Optional[int] = 32,
41
+ points_per_batch: int = 64,
42
+ pred_iou_thresh: float = 0.8,
43
+ stability_score_thresh: float = 0.95,
44
+ stability_score_offset: float = 1.0,
45
+ mask_threshold: float = 0.0,
46
+ box_nms_thresh: float = 0.7,
47
+ crop_n_layers: int = 0,
48
+ crop_nms_thresh: float = 0.7,
49
+ crop_overlap_ratio: float = 512 / 1500,
50
+ crop_n_points_downscale_factor: int = 1,
51
+ point_grids: Optional[List[np.ndarray]] = None,
52
+ min_mask_region_area: int = 0,
53
+ output_mode: str = "binary_mask",
54
+ use_m2m: bool = False,
55
+ multimask_output: bool = True,
56
+ **kwargs,
57
+ ) -> None:
58
+ """
59
+ Using a SAM 2 model, generates masks for the entire image.
60
+ Generates a grid of point prompts over the image, then filters
61
+ low quality and duplicate masks. The default settings are chosen
62
+ for SAM 2 with a HieraL backbone.
63
+
64
+ Arguments:
65
+ model (Sam): The SAM 2 model to use for mask prediction.
66
+ points_per_side (int or None): The number of points to be sampled
67
+ along one side of the image. The total number of points is
68
+ points_per_side**2. If None, 'point_grids' must provide explicit
69
+ point sampling.
70
+ points_per_batch (int): Sets the number of points run simultaneously
71
+ by the model. Higher numbers may be faster but use more GPU memory.
72
+ pred_iou_thresh (float): A filtering threshold in [0,1], using the
73
+ model's predicted mask quality.
74
+ stability_score_thresh (float): A filtering threshold in [0,1], using
75
+ the stability of the mask under changes to the cutoff used to binarize
76
+ the model's mask predictions.
77
+ stability_score_offset (float): The amount to shift the cutoff when
78
+ calculated the stability score.
79
+ mask_threshold (float): Threshold for binarizing the mask logits
80
+ box_nms_thresh (float): The box IoU cutoff used by non-maximal
81
+ suppression to filter duplicate masks.
82
+ crop_n_layers (int): If >0, mask prediction will be run again on
83
+ crops of the image. Sets the number of layers to run, where each
84
+ layer has 2**i_layer number of image crops.
85
+ crop_nms_thresh (float): The box IoU cutoff used by non-maximal
86
+ suppression to filter duplicate masks between different crops.
87
+ crop_overlap_ratio (float): Sets the degree to which crops overlap.
88
+ In the first crop layer, crops will overlap by this fraction of
89
+ the image length. Later layers with more crops scale down this overlap.
90
+ crop_n_points_downscale_factor (int): The number of points-per-side
91
+ sampled in layer n is scaled down by crop_n_points_downscale_factor**n.
92
+ point_grids (list(np.ndarray) or None): A list over explicit grids
93
+ of points used for sampling, normalized to [0,1]. The nth grid in the
94
+ list is used in the nth crop layer. Exclusive with points_per_side.
95
+ min_mask_region_area (int): If >0, postprocessing will be applied
96
+ to remove disconnected regions and holes in masks with area smaller
97
+ than min_mask_region_area. Requires opencv.
98
+ output_mode (str): The form masks are returned in. Can be 'binary_mask',
99
+ 'uncompressed_rle', or 'coco_rle'. 'coco_rle' requires pycocotools.
100
+ For large resolutions, 'binary_mask' may consume large amounts of
101
+ memory.
102
+ use_m2m (bool): Whether to add a one step refinement using previous mask predictions.
103
+ multimask_output (bool): Whether to output multimask at each point of the grid.
104
+ """
105
+
106
+ assert (points_per_side is None) != (
107
+ point_grids is None
108
+ ), "Exactly one of points_per_side or point_grid must be provided."
109
+ if points_per_side is not None:
110
+ self.point_grids = build_all_layer_point_grids(
111
+ points_per_side,
112
+ crop_n_layers,
113
+ crop_n_points_downscale_factor,
114
+ )
115
+ elif point_grids is not None:
116
+ self.point_grids = point_grids
117
+ else:
118
+ raise ValueError("Can't have both points_per_side and point_grid be None.")
119
+
120
+ assert output_mode in [
121
+ "binary_mask",
122
+ "uncompressed_rle",
123
+ "coco_rle",
124
+ ], f"Unknown output_mode {output_mode}."
125
+ if output_mode == "coco_rle":
126
+ try:
127
+ from pycocotools import mask as mask_utils # type: ignore # noqa: F401
128
+ except ImportError as e:
129
+ print("Please install pycocotools")
130
+ raise e
131
+
132
+ self.predictor = SAM2ImagePredictor(
133
+ model,
134
+ max_hole_area=min_mask_region_area,
135
+ max_sprinkle_area=min_mask_region_area,
136
+ )
137
+ self.points_per_batch = points_per_batch
138
+ self.pred_iou_thresh = pred_iou_thresh
139
+ self.stability_score_thresh = stability_score_thresh
140
+ self.stability_score_offset = stability_score_offset
141
+ self.mask_threshold = mask_threshold
142
+ self.box_nms_thresh = box_nms_thresh
143
+ self.crop_n_layers = crop_n_layers
144
+ self.crop_nms_thresh = crop_nms_thresh
145
+ self.crop_overlap_ratio = crop_overlap_ratio
146
+ self.crop_n_points_downscale_factor = crop_n_points_downscale_factor
147
+ self.min_mask_region_area = min_mask_region_area
148
+ self.output_mode = output_mode
149
+ self.use_m2m = use_m2m
150
+ self.multimask_output = multimask_output
151
+
152
+ @classmethod
153
+ def from_pretrained(cls, model_id: str, **kwargs) -> "SAM2AutomaticMaskGenerator":
154
+ """
155
+ Load a pretrained model from the Hugging Face hub.
156
+
157
+ Arguments:
158
+ model_id (str): The Hugging Face repository ID.
159
+ **kwargs: Additional arguments to pass to the model constructor.
160
+
161
+ Returns:
162
+ (SAM2AutomaticMaskGenerator): The loaded model.
163
+ """
164
+ from sam2.build_sam import build_sam2_hf
165
+
166
+ sam_model = build_sam2_hf(model_id, **kwargs)
167
+ return cls(sam_model, **kwargs)
168
+
169
+ @torch.no_grad()
170
+ def generate(self, image: np.ndarray) -> List[Dict[str, Any]]:
171
+ """
172
+ Generates masks for the given image.
173
+
174
+ Arguments:
175
+ image (np.ndarray): The image to generate masks for, in HWC uint8 format.
176
+
177
+ Returns:
178
+ list(dict(str, any)): A list over records for masks. Each record is
179
+ a dict containing the following keys:
180
+ segmentation (dict(str, any) or np.ndarray): The mask. If
181
+ output_mode='binary_mask', is an array of shape HW. Otherwise,
182
+ is a dictionary containing the RLE.
183
+ bbox (list(float)): The box around the mask, in XYWH format.
184
+ area (int): The area in pixels of the mask.
185
+ predicted_iou (float): The model's own prediction of the mask's
186
+ quality. This is filtered by the pred_iou_thresh parameter.
187
+ point_coords (list(list(float))): The point coordinates input
188
+ to the model to generate this mask.
189
+ stability_score (float): A measure of the mask's quality. This
190
+ is filtered on using the stability_score_thresh parameter.
191
+ crop_box (list(float)): The crop of the image used to generate
192
+ the mask, given in XYWH format.
193
+ """
194
+
195
+ # Generate masks
196
+ mask_data = self._generate_masks(image)
197
+
198
+ # Encode masks
199
+ if self.output_mode == "coco_rle":
200
+ mask_data["segmentations"] = [
201
+ coco_encode_rle(rle) for rle in mask_data["rles"]
202
+ ]
203
+ elif self.output_mode == "binary_mask":
204
+ mask_data["segmentations"] = [rle_to_mask(rle) for rle in mask_data["rles"]]
205
+ else:
206
+ mask_data["segmentations"] = mask_data["rles"]
207
+
208
+ # Write mask records
209
+ curr_anns = []
210
+ for idx in range(len(mask_data["segmentations"])):
211
+ ann = {
212
+ "segmentation": mask_data["segmentations"][idx],
213
+ "area": area_from_rle(mask_data["rles"][idx]),
214
+ "bbox": box_xyxy_to_xywh(mask_data["boxes"][idx]).tolist(),
215
+ "predicted_iou": mask_data["iou_preds"][idx].item(),
216
+ "point_coords": [mask_data["points"][idx].tolist()],
217
+ "stability_score": mask_data["stability_score"][idx].item(),
218
+ "crop_box": box_xyxy_to_xywh(mask_data["crop_boxes"][idx]).tolist(),
219
+ }
220
+ curr_anns.append(ann)
221
+
222
+ return curr_anns
223
+
224
+ def _generate_masks(self, image: np.ndarray) -> MaskData:
225
+ orig_size = image.shape[:2]
226
+ crop_boxes, layer_idxs = generate_crop_boxes(
227
+ orig_size, self.crop_n_layers, self.crop_overlap_ratio
228
+ )
229
+
230
+ # Iterate over image crops
231
+ data = MaskData()
232
+ for crop_box, layer_idx in zip(crop_boxes, layer_idxs):
233
+ crop_data = self._process_crop(image, crop_box, layer_idx, orig_size)
234
+ data.cat(crop_data)
235
+
236
+ # Remove duplicate masks between crops
237
+ if len(crop_boxes) > 1:
238
+ # Prefer masks from smaller crops
239
+ scores = 1 / box_area(data["crop_boxes"])
240
+ scores = scores.to(data["boxes"].device)
241
+ keep_by_nms = batched_nms(
242
+ data["boxes"].float(),
243
+ scores,
244
+ torch.zeros_like(data["boxes"][:, 0]), # categories
245
+ iou_threshold=self.crop_nms_thresh,
246
+ )
247
+ data.filter(keep_by_nms)
248
+ data.to_numpy()
249
+ return data
250
+
251
+ def _process_crop(
252
+ self,
253
+ image: np.ndarray,
254
+ crop_box: List[int],
255
+ crop_layer_idx: int,
256
+ orig_size: Tuple[int, ...],
257
+ ) -> MaskData:
258
+ # Crop the image and calculate embeddings
259
+ x0, y0, x1, y1 = crop_box
260
+ cropped_im = image[y0:y1, x0:x1, :]
261
+ cropped_im_size = cropped_im.shape[:2]
262
+ self.predictor.set_image(cropped_im)
263
+
264
+ # Get points for this crop
265
+ points_scale = np.array(cropped_im_size)[None, ::-1]
266
+ points_for_image = self.point_grids[crop_layer_idx] * points_scale
267
+
268
+ # Generate masks for this crop in batches
269
+ data = MaskData()
270
+ for (points,) in batch_iterator(self.points_per_batch, points_for_image):
271
+ batch_data = self._process_batch(
272
+ points, cropped_im_size, crop_box, orig_size, normalize=True
273
+ )
274
+ data.cat(batch_data)
275
+ del batch_data
276
+ self.predictor.reset_predictor()
277
+
278
+ # Remove duplicates within this crop.
279
+ keep_by_nms = batched_nms(
280
+ data["boxes"].float(),
281
+ data["iou_preds"],
282
+ torch.zeros_like(data["boxes"][:, 0]), # categories
283
+ iou_threshold=self.box_nms_thresh,
284
+ )
285
+ data.filter(keep_by_nms)
286
+
287
+ # Return to the original image frame
288
+ data["boxes"] = uncrop_boxes_xyxy(data["boxes"], crop_box)
289
+ data["points"] = uncrop_points(data["points"], crop_box)
290
+ data["crop_boxes"] = torch.tensor([crop_box for _ in range(len(data["rles"]))])
291
+
292
+ return data
293
+
294
+ def _process_batch(
295
+ self,
296
+ points: np.ndarray,
297
+ im_size: Tuple[int, ...],
298
+ crop_box: List[int],
299
+ orig_size: Tuple[int, ...],
300
+ normalize=False,
301
+ ) -> MaskData:
302
+ orig_h, orig_w = orig_size
303
+
304
+ # Run model on this batch
305
+ points = torch.as_tensor(
306
+ points, dtype=torch.float32, device=self.predictor.device
307
+ )
308
+ in_points = self.predictor._transforms.transform_coords(
309
+ points, normalize=normalize, orig_hw=im_size
310
+ )
311
+ in_labels = torch.ones(
312
+ in_points.shape[0], dtype=torch.int, device=in_points.device
313
+ )
314
+ masks, iou_preds, low_res_masks = self.predictor._predict(
315
+ in_points[:, None, :],
316
+ in_labels[:, None],
317
+ multimask_output=self.multimask_output,
318
+ return_logits=True,
319
+ )
320
+
321
+ # Serialize predictions and store in MaskData
322
+ data = MaskData(
323
+ masks=masks.flatten(0, 1),
324
+ iou_preds=iou_preds.flatten(0, 1),
325
+ points=points.repeat_interleave(masks.shape[1], dim=0),
326
+ low_res_masks=low_res_masks.flatten(0, 1),
327
+ )
328
+ del masks
329
+
330
+ if not self.use_m2m:
331
+ # Filter by predicted IoU
332
+ if self.pred_iou_thresh > 0.0:
333
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
334
+ data.filter(keep_mask)
335
+
336
+ # Calculate and filter by stability score
337
+ data["stability_score"] = calculate_stability_score(
338
+ data["masks"], self.mask_threshold, self.stability_score_offset
339
+ )
340
+ if self.stability_score_thresh > 0.0:
341
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
342
+ data.filter(keep_mask)
343
+ else:
344
+ # One step refinement using previous mask predictions
345
+ in_points = self.predictor._transforms.transform_coords(
346
+ data["points"], normalize=normalize, orig_hw=im_size
347
+ )
348
+ labels = torch.ones(
349
+ in_points.shape[0], dtype=torch.int, device=in_points.device
350
+ )
351
+ masks, ious = self.refine_with_m2m(
352
+ in_points, labels, data["low_res_masks"], self.points_per_batch
353
+ )
354
+ data["masks"] = masks.squeeze(1)
355
+ data["iou_preds"] = ious.squeeze(1)
356
+
357
+ if self.pred_iou_thresh > 0.0:
358
+ keep_mask = data["iou_preds"] > self.pred_iou_thresh
359
+ data.filter(keep_mask)
360
+
361
+ data["stability_score"] = calculate_stability_score(
362
+ data["masks"], self.mask_threshold, self.stability_score_offset
363
+ )
364
+ if self.stability_score_thresh > 0.0:
365
+ keep_mask = data["stability_score"] >= self.stability_score_thresh
366
+ data.filter(keep_mask)
367
+
368
+ # Threshold masks and calculate boxes
369
+ data["masks"] = data["masks"] > self.mask_threshold
370
+ data["boxes"] = batched_mask_to_box(data["masks"])
371
+
372
+ # Filter boxes that touch crop boundaries
373
+ keep_mask = ~is_box_near_crop_edge(
374
+ data["boxes"], crop_box, [0, 0, orig_w, orig_h]
375
+ )
376
+ if not torch.all(keep_mask):
377
+ data.filter(keep_mask)
378
+
379
+ # Compress to RLE
380
+ data["masks"] = uncrop_masks(data["masks"], crop_box, orig_h, orig_w)
381
+ data["rles"] = mask_to_rle_pytorch(data["masks"])
382
+ del data["masks"]
383
+
384
+ return data
385
+
386
+ @staticmethod
387
+ def postprocess_small_regions(
388
+ mask_data: MaskData, min_area: int, nms_thresh: float
389
+ ) -> MaskData:
390
+ """
391
+ Removes small disconnected regions and holes in masks, then reruns
392
+ box NMS to remove any new duplicates.
393
+
394
+ Edits mask_data in place.
395
+
396
+ Requires open-cv as a dependency.
397
+ """
398
+ if len(mask_data["rles"]) == 0:
399
+ return mask_data
400
+
401
+ # Filter small disconnected regions and holes
402
+ new_masks = []
403
+ scores = []
404
+ for rle in mask_data["rles"]:
405
+ mask = rle_to_mask(rle)
406
+
407
+ mask, changed = remove_small_regions(mask, min_area, mode="holes")
408
+ unchanged = not changed
409
+ mask, changed = remove_small_regions(mask, min_area, mode="islands")
410
+ unchanged = unchanged and not changed
411
+
412
+ new_masks.append(torch.as_tensor(mask).unsqueeze(0))
413
+ # Give score=0 to changed masks and score=1 to unchanged masks
414
+ # so NMS will prefer ones that didn't need postprocessing
415
+ scores.append(float(unchanged))
416
+
417
+ # Recalculate boxes and remove any new duplicates
418
+ masks = torch.cat(new_masks, dim=0)
419
+ boxes = batched_mask_to_box(masks)
420
+ keep_by_nms = batched_nms(
421
+ boxes.float(),
422
+ torch.as_tensor(scores),
423
+ torch.zeros_like(boxes[:, 0]), # categories
424
+ iou_threshold=nms_thresh,
425
+ )
426
+
427
+ # Only recalculate RLEs for masks that have changed
428
+ for i_mask in keep_by_nms:
429
+ if scores[i_mask] == 0.0:
430
+ mask_torch = masks[i_mask].unsqueeze(0)
431
+ mask_data["rles"][i_mask] = mask_to_rle_pytorch(mask_torch)[0]
432
+ mask_data["boxes"][i_mask] = boxes[i_mask] # update res directly
433
+ mask_data.filter(keep_by_nms)
434
+
435
+ return mask_data
436
+
437
+ def refine_with_m2m(self, points, point_labels, low_res_masks, points_per_batch):
438
+ new_masks = []
439
+ new_iou_preds = []
440
+
441
+ for cur_points, cur_point_labels, low_res_mask in batch_iterator(
442
+ points_per_batch, points, point_labels, low_res_masks
443
+ ):
444
+ best_masks, best_iou_preds, _ = self.predictor._predict(
445
+ cur_points[:, None, :],
446
+ cur_point_labels[:, None],
447
+ mask_input=low_res_mask[:, None, :],
448
+ multimask_output=False,
449
+ return_logits=True,
450
+ )
451
+ new_masks.append(best_masks)
452
+ new_iou_preds.append(best_iou_preds)
453
+ masks = torch.cat(new_masks, dim=0)
454
+ return masks, torch.cat(new_iou_preds, dim=0)
eval/grounded_sam/sam2/build_sam.py ADDED
@@ -0,0 +1,172 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Copyright (c) Meta Platforms, Inc. and affiliates.
2
+ # All rights reserved.
3
+
4
+ # This source code is licensed under the license found in the
5
+ # LICENSE file in the root directory of this source tree.
6
+
7
+ import logging
8
+ import os
9
+ import sys
10
+ import torch
11
+ from hydra import compose
12
+ from hydra.utils import instantiate
13
+ from omegaconf import OmegaConf
14
+
15
+ from pathlib import Path
16
+ current_dir = str(Path(os.path.abspath('')))
17
+ sam_dir = os.path.join(current_dir, "eval/grounded_sam")
18
+ sys.path.append(sam_dir)
19
+
20
+ import sam2
21
+
22
+ # # Check if the user is running Python from the parent directory of the sam2 repo
23
+ # # (i.e. the directory where this repo is cloned into) -- this is not supported since
24
+ # # it could shadow the sam2 package and cause issues.
25
+ # if os.path.isdir(os.path.join(sam2.__path__[0], "sam2")):
26
+ # # If the user has "sam2/sam2" in their path, they are likey importing the repo itself
27
+ # # as "sam2" rather than importing the "sam2" python package (i.e. "sam2/sam2" directory).
28
+ # # This typically happens because the user is running Python from the parent directory
29
+ # # that contains the sam2 repo they cloned.
30
+ # raise RuntimeError(
31
+ # "You're likely running Python from the parent directory of the sam2 repository "
32
+ # "(i.e. the directory where https://github.com/facebookresearch/sam2 is cloned into). "
33
+ # "This is not supported since the `sam2` Python package could be shadowed by the "
34
+ # "repository name (the repository is also named `sam2` and contains the Python package "
35
+ # "in `sam2/sam2`). Please run Python from another directory (e.g. from the repo dir "
36
+ # "rather than its parent dir, or from your home directory) after installing SAM 2."
37
+ # )
38
+
39
+
40
+ HF_MODEL_ID_TO_FILENAMES = {
41
+ "facebook/sam2-hiera-tiny": (
42
+ "configs/sam2/sam2_hiera_t.yaml",
43
+ "sam2_hiera_tiny.pt",
44
+ ),
45
+ "facebook/sam2-hiera-small": (
46
+ "configs/sam2/sam2_hiera_s.yaml",
47
+ "sam2_hiera_small.pt",
48
+ ),
49
+ "facebook/sam2-hiera-base-plus": (
50
+ "configs/sam2/sam2_hiera_b+.yaml",
51
+ "sam2_hiera_base_plus.pt",
52
+ ),
53
+ "facebook/sam2-hiera-large": (
54
+ "configs/sam2/sam2_hiera_l.yaml",
55
+ "sam2_hiera_large.pt",
56
+ ),
57
+ "facebook/sam2.1-hiera-tiny": (
58
+ "configs/sam2.1/sam2.1_hiera_t.yaml",
59
+ "sam2.1_hiera_tiny.pt",
60
+ ),
61
+ "facebook/sam2.1-hiera-small": (
62
+ "configs/sam2.1/sam2.1_hiera_s.yaml",
63
+ "sam2.1_hiera_small.pt",
64
+ ),
65
+ "facebook/sam2.1-hiera-base-plus": (
66
+ "configs/sam2.1/sam2.1_hiera_b+.yaml",
67
+ "sam2.1_hiera_base_plus.pt",
68
+ ),
69
+ "facebook/sam2.1-hiera-large": (
70
+ "configs/sam2.1/sam2.1_hiera_l.yaml",
71
+ "sam2.1_hiera_large.pt",
72
+ ),
73
+ }
74
+
75
+
76
+ def build_sam2(
77
+ config_file,
78
+ ckpt_path=None,
79
+ device="cuda",
80
+ mode="eval",
81
+ hydra_overrides_extra=[],
82
+ apply_postprocessing=True,
83
+ **kwargs,
84
+ ):
85
+
86
+ if apply_postprocessing:
87
+ hydra_overrides_extra = hydra_overrides_extra.copy()
88
+ hydra_overrides_extra += [
89
+ # dynamically fall back to multi-mask if the single mask is not stable
90
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
91
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
92
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
93
+ ]
94
+ # Read config and init model
95
+ cfg = compose(config_name=config_file, overrides=hydra_overrides_extra)
96
+ OmegaConf.resolve(cfg)
97
+ model = instantiate(cfg.model, _recursive_=True)
98
+ _load_checkpoint(model, ckpt_path)
99
+ model = model.to(device)
100
+ if mode == "eval":
101
+ model.eval()
102
+ return model
103
+
104
+
105
+ def build_sam2_video_predictor(
106
+ config_file,
107
+ ckpt_path=None,
108
+ device="cuda",
109
+ mode="eval",
110
+ hydra_overrides_extra=[],
111
+ apply_postprocessing=True,
112
+ **kwargs,
113
+ ):
114
+ hydra_overrides = [
115
+ "++model._target_=sam2.sam2_video_predictor.SAM2VideoPredictor",
116
+ ]
117
+ if apply_postprocessing:
118
+ hydra_overrides_extra = hydra_overrides_extra.copy()
119
+ hydra_overrides_extra += [
120
+ # dynamically fall back to multi-mask if the single mask is not stable
121
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_via_stability=true",
122
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_delta=0.05",
123
+ "++model.sam_mask_decoder_extra_args.dynamic_multimask_stability_thresh=0.98",
124
+ # the sigmoid mask logits on interacted frames with clicks in the memory encoder so that the encoded masks are exactly as what users see from clicking
125
+ "++model.binarize_mask_from_pts_for_mem_enc=true",
126
+ # fill small holes in the low-res masks up to `fill_hole_area` (before resizing them to the original video resolution)
127
+ "++model.fill_hole_area=8",
128
+ ]
129
+ hydra_overrides.extend(hydra_overrides_extra)
130
+
131
+ # Read config and init model
132
+ cfg = compose(config_name=config_file, overrides=hydra_overrides)
133
+ OmegaConf.resolve(cfg)
134
+ model = instantiate(cfg.model, _recursive_=True)
135
+ _load_checkpoint(model, ckpt_path)
136
+ model = model.to(device)
137
+ if mode == "eval":
138
+ model.eval()
139
+ return model
140
+
141
+
142
+ def _hf_download(model_id):
143
+ from huggingface_hub import hf_hub_download
144
+
145
+ config_name, checkpoint_name = HF_MODEL_ID_TO_FILENAMES[model_id]
146
+ ckpt_path = hf_hub_download(repo_id=model_id, filename=checkpoint_name)
147
+ return config_name, ckpt_path
148
+
149
+
150
+ def build_sam2_hf(model_id, **kwargs):
151
+ config_name, ckpt_path = _hf_download(model_id)
152
+ return build_sam2(config_file=config_name, ckpt_path=ckpt_path, **kwargs)
153
+
154
+
155
+ def build_sam2_video_predictor_hf(model_id, **kwargs):
156
+ config_name, ckpt_path = _hf_download(model_id)
157
+ return build_sam2_video_predictor(
158
+ config_file=config_name, ckpt_path=ckpt_path, **kwargs
159
+ )
160
+
161
+
162
+ def _load_checkpoint(model, ckpt_path):
163
+ if ckpt_path is not None:
164
+ sd = torch.load(ckpt_path, map_location="cpu", weights_only=True)["model"]
165
+ missing_keys, unexpected_keys = model.load_state_dict(sd)
166
+ if missing_keys:
167
+ logging.error(missing_keys)
168
+ raise RuntimeError()
169
+ if unexpected_keys:
170
+ logging.error(unexpected_keys)
171
+ raise RuntimeError()
172
+ logging.info("Loaded checkpoint sucessfully")
eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_b+.yaml ADDED
@@ -0,0 +1,116 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [32, 32]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [32, 32]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ no_obj_embed_spatial: true
93
+ # use high-resolution feature map in the SAM mask decoder
94
+ use_high_res_features_in_sam: true
95
+ # output 3 masks on the first click on initial conditioning frames
96
+ multimask_output_in_sam: true
97
+ # SAM heads
98
+ iou_prediction_use_sigmoid: True
99
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
100
+ use_obj_ptrs_in_encoder: true
101
+ add_tpos_enc_to_obj_ptrs: true
102
+ proj_tpos_enc_in_obj_ptrs: true
103
+ use_signed_tpos_enc_to_obj_ptrs: true
104
+ only_obj_ptrs_in_the_past_for_eval: true
105
+ # object occlusion prediction
106
+ pred_obj_scores: true
107
+ pred_obj_scores_mlp: true
108
+ fixed_no_obj_ptr: true
109
+ # multimask tracking settings
110
+ multimask_output_for_tracking: true
111
+ use_multimask_token_for_obj_ptr: true
112
+ multimask_min_pt_num: 0
113
+ multimask_max_pt_num: 1
114
+ use_mlp_for_obj_ptr_proj: true
115
+ # Compilation flag
116
+ compile_image_encoder: False
eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_l.yaml ADDED
@@ -0,0 +1,120 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [32, 32]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [32, 32]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ compile_image_encoder: False
eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_s.yaml ADDED
@@ -0,0 +1,119 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 11, 2]
14
+ global_att_blocks: [7, 10, 13]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ sigmoid_scale_for_mem_enc: 20.0
91
+ sigmoid_bias_for_mem_enc: -10.0
92
+ use_mask_input_as_output_without_sam: true
93
+ # Memory
94
+ directly_add_no_mem_embed: true
95
+ no_obj_embed_spatial: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: true
105
+ proj_tpos_enc_in_obj_ptrs: true
106
+ use_signed_tpos_enc_to_obj_ptrs: true
107
+ only_obj_ptrs_in_the_past_for_eval: true
108
+ # object occlusion prediction
109
+ pred_obj_scores: true
110
+ pred_obj_scores_mlp: true
111
+ fixed_no_obj_ptr: true
112
+ # multimask tracking settings
113
+ multimask_output_for_tracking: true
114
+ use_multimask_token_for_obj_ptr: true
115
+ multimask_min_pt_num: 0
116
+ multimask_max_pt_num: 1
117
+ use_mlp_for_obj_ptr_proj: true
118
+ # Compilation flag
119
+ compile_image_encoder: False
eval/grounded_sam/sam2/configs/sam2.1/sam2.1_hiera_t.yaml ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 96
12
+ num_heads: 1
13
+ stages: [1, 2, 7, 2]
14
+ global_att_blocks: [5, 7, 9]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ neck:
17
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
18
+ position_encoding:
19
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
20
+ num_pos_feats: 256
21
+ normalize: true
22
+ scale: null
23
+ temperature: 10000
24
+ d_model: 256
25
+ backbone_channel_list: [768, 384, 192, 96]
26
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
27
+ fpn_interp_model: nearest
28
+
29
+ memory_attention:
30
+ _target_: sam2.modeling.memory_attention.MemoryAttention
31
+ d_model: 256
32
+ pos_enc_at_input: true
33
+ layer:
34
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
35
+ activation: relu
36
+ dim_feedforward: 2048
37
+ dropout: 0.1
38
+ pos_enc_at_attn: false
39
+ self_attention:
40
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
41
+ rope_theta: 10000.0
42
+ feat_sizes: [32, 32]
43
+ embedding_dim: 256
44
+ num_heads: 1
45
+ downsample_rate: 1
46
+ dropout: 0.1
47
+ d_model: 256
48
+ pos_enc_at_cross_attn_keys: true
49
+ pos_enc_at_cross_attn_queries: false
50
+ cross_attention:
51
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
52
+ rope_theta: 10000.0
53
+ feat_sizes: [32, 32]
54
+ rope_k_repeat: True
55
+ embedding_dim: 256
56
+ num_heads: 1
57
+ downsample_rate: 1
58
+ dropout: 0.1
59
+ kv_in_dim: 64
60
+ num_layers: 4
61
+
62
+ memory_encoder:
63
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
64
+ out_dim: 64
65
+ position_encoding:
66
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
67
+ num_pos_feats: 64
68
+ normalize: true
69
+ scale: null
70
+ temperature: 10000
71
+ mask_downsampler:
72
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
73
+ kernel_size: 3
74
+ stride: 2
75
+ padding: 1
76
+ fuser:
77
+ _target_: sam2.modeling.memory_encoder.Fuser
78
+ layer:
79
+ _target_: sam2.modeling.memory_encoder.CXBlock
80
+ dim: 256
81
+ kernel_size: 7
82
+ padding: 3
83
+ layer_scale_init_value: 1e-6
84
+ use_dwconv: True # depth-wise convs
85
+ num_layers: 2
86
+
87
+ num_maskmem: 7
88
+ image_size: 1024
89
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
90
+ # SAM decoder
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ no_obj_embed_spatial: true
97
+ # use high-resolution feature map in the SAM mask decoder
98
+ use_high_res_features_in_sam: true
99
+ # output 3 masks on the first click on initial conditioning frames
100
+ multimask_output_in_sam: true
101
+ # SAM heads
102
+ iou_prediction_use_sigmoid: True
103
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
104
+ use_obj_ptrs_in_encoder: true
105
+ add_tpos_enc_to_obj_ptrs: true
106
+ proj_tpos_enc_in_obj_ptrs: true
107
+ use_signed_tpos_enc_to_obj_ptrs: true
108
+ only_obj_ptrs_in_the_past_for_eval: true
109
+ # object occlusion prediction
110
+ pred_obj_scores: true
111
+ pred_obj_scores_mlp: true
112
+ fixed_no_obj_ptr: true
113
+ # multimask tracking settings
114
+ multimask_output_for_tracking: true
115
+ use_multimask_token_for_obj_ptr: true
116
+ multimask_min_pt_num: 0
117
+ multimask_max_pt_num: 1
118
+ use_mlp_for_obj_ptr_proj: true
119
+ # Compilation flag
120
+ # HieraT does not currently support compilation, should always be set to False
121
+ compile_image_encoder: False
eval/grounded_sam/sam2/configs/sam2.1_training/sam2.1_hiera_b+_MOSE_finetune.yaml ADDED
@@ -0,0 +1,339 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ scratch:
4
+ resolution: 1024
5
+ train_batch_size: 1
6
+ num_train_workers: 10
7
+ num_frames: 8
8
+ max_num_objects: 3
9
+ base_lr: 5.0e-6
10
+ vision_lr: 3.0e-06
11
+ phases_per_epoch: 1
12
+ num_epochs: 40
13
+
14
+ dataset:
15
+ # PATHS to Dataset
16
+ img_folder: null # PATH to MOSE JPEGImages folder
17
+ gt_folder: null # PATH to MOSE Annotations folder
18
+ file_list_txt: training/assets/MOSE_sample_train_list.txt # Optional PATH to filelist containing a subset of videos to be used for training
19
+ multiplier: 2
20
+
21
+ # Video transforms
22
+ vos:
23
+ train_transforms:
24
+ - _target_: training.dataset.transforms.ComposeAPI
25
+ transforms:
26
+ - _target_: training.dataset.transforms.RandomHorizontalFlip
27
+ consistent_transform: True
28
+ - _target_: training.dataset.transforms.RandomAffine
29
+ degrees: 25
30
+ shear: 20
31
+ image_interpolation: bilinear
32
+ consistent_transform: True
33
+ - _target_: training.dataset.transforms.RandomResizeAPI
34
+ sizes: ${scratch.resolution}
35
+ square: true
36
+ consistent_transform: True
37
+ - _target_: training.dataset.transforms.ColorJitter
38
+ consistent_transform: True
39
+ brightness: 0.1
40
+ contrast: 0.03
41
+ saturation: 0.03
42
+ hue: null
43
+ - _target_: training.dataset.transforms.RandomGrayscale
44
+ p: 0.05
45
+ consistent_transform: True
46
+ - _target_: training.dataset.transforms.ColorJitter
47
+ consistent_transform: False
48
+ brightness: 0.1
49
+ contrast: 0.05
50
+ saturation: 0.05
51
+ hue: null
52
+ - _target_: training.dataset.transforms.ToTensorAPI
53
+ - _target_: training.dataset.transforms.NormalizeAPI
54
+ mean: [0.485, 0.456, 0.406]
55
+ std: [0.229, 0.224, 0.225]
56
+
57
+ trainer:
58
+ _target_: training.trainer.Trainer
59
+ mode: train_only
60
+ max_epochs: ${times:${scratch.num_epochs},${scratch.phases_per_epoch}}
61
+ accelerator: cuda
62
+ seed_value: 123
63
+
64
+ model:
65
+ _target_: training.model.sam2.SAM2Train
66
+ image_encoder:
67
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
68
+ scalp: 1
69
+ trunk:
70
+ _target_: sam2.modeling.backbones.hieradet.Hiera
71
+ embed_dim: 112
72
+ num_heads: 2
73
+ drop_path_rate: 0.1
74
+ neck:
75
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
76
+ position_encoding:
77
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
78
+ num_pos_feats: 256
79
+ normalize: true
80
+ scale: null
81
+ temperature: 10000
82
+ d_model: 256
83
+ backbone_channel_list: [896, 448, 224, 112]
84
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
85
+ fpn_interp_model: nearest
86
+
87
+ memory_attention:
88
+ _target_: sam2.modeling.memory_attention.MemoryAttention
89
+ d_model: 256
90
+ pos_enc_at_input: true
91
+ layer:
92
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
93
+ activation: relu
94
+ dim_feedforward: 2048
95
+ dropout: 0.1
96
+ pos_enc_at_attn: false
97
+ self_attention:
98
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
99
+ rope_theta: 10000.0
100
+ feat_sizes: [32, 32]
101
+ embedding_dim: 256
102
+ num_heads: 1
103
+ downsample_rate: 1
104
+ dropout: 0.1
105
+ d_model: 256
106
+ pos_enc_at_cross_attn_keys: true
107
+ pos_enc_at_cross_attn_queries: false
108
+ cross_attention:
109
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
110
+ rope_theta: 10000.0
111
+ feat_sizes: [32, 32]
112
+ rope_k_repeat: True
113
+ embedding_dim: 256
114
+ num_heads: 1
115
+ downsample_rate: 1
116
+ dropout: 0.1
117
+ kv_in_dim: 64
118
+ num_layers: 4
119
+
120
+ memory_encoder:
121
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
122
+ out_dim: 64
123
+ position_encoding:
124
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
125
+ num_pos_feats: 64
126
+ normalize: true
127
+ scale: null
128
+ temperature: 10000
129
+ mask_downsampler:
130
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
131
+ kernel_size: 3
132
+ stride: 2
133
+ padding: 1
134
+ fuser:
135
+ _target_: sam2.modeling.memory_encoder.Fuser
136
+ layer:
137
+ _target_: sam2.modeling.memory_encoder.CXBlock
138
+ dim: 256
139
+ kernel_size: 7
140
+ padding: 3
141
+ layer_scale_init_value: 1e-6
142
+ use_dwconv: True # depth-wise convs
143
+ num_layers: 2
144
+
145
+ num_maskmem: 7
146
+ image_size: ${scratch.resolution}
147
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
148
+ sigmoid_scale_for_mem_enc: 20.0
149
+ sigmoid_bias_for_mem_enc: -10.0
150
+ use_mask_input_as_output_without_sam: true
151
+ # Memory
152
+ directly_add_no_mem_embed: true
153
+ no_obj_embed_spatial: true
154
+ # use high-resolution feature map in the SAM mask decoder
155
+ use_high_res_features_in_sam: true
156
+ # output 3 masks on the first click on initial conditioning frames
157
+ multimask_output_in_sam: true
158
+ # SAM heads
159
+ iou_prediction_use_sigmoid: True
160
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
161
+ use_obj_ptrs_in_encoder: true
162
+ add_tpos_enc_to_obj_ptrs: true
163
+ proj_tpos_enc_in_obj_ptrs: true
164
+ use_signed_tpos_enc_to_obj_ptrs: true
165
+ only_obj_ptrs_in_the_past_for_eval: true
166
+ # object occlusion prediction
167
+ pred_obj_scores: true
168
+ pred_obj_scores_mlp: true
169
+ fixed_no_obj_ptr: true
170
+ # multimask tracking settings
171
+ multimask_output_for_tracking: true
172
+ use_multimask_token_for_obj_ptr: true
173
+ multimask_min_pt_num: 0
174
+ multimask_max_pt_num: 1
175
+ use_mlp_for_obj_ptr_proj: true
176
+ # Compilation flag
177
+ # compile_image_encoder: False
178
+
179
+ ####### Training specific params #######
180
+ # box/point input and corrections
181
+ prob_to_use_pt_input_for_train: 0.5
182
+ prob_to_use_pt_input_for_eval: 0.0
183
+ prob_to_use_box_input_for_train: 0.5 # 0.5*0.5 = 0.25 prob to use box instead of points
184
+ prob_to_use_box_input_for_eval: 0.0
185
+ prob_to_sample_from_gt_for_train: 0.1 # with a small prob, sampling correction points from GT mask instead of prediction errors
186
+ num_frames_to_correct_for_train: 2 # iteratively sample on random 1~2 frames (always include the first frame)
187
+ num_frames_to_correct_for_eval: 1 # only iteratively sample on first frame
188
+ rand_frames_to_correct_for_train: True # random #init-cond-frame ~ 2
189
+ add_all_frames_to_correct_as_cond: True # when a frame receives a correction click, it becomes a conditioning frame (even if it's not initially a conditioning frame)
190
+ # maximum 2 initial conditioning frames
191
+ num_init_cond_frames_for_train: 2
192
+ rand_init_cond_frames_for_train: True # random 1~2
193
+ num_correction_pt_per_frame: 7
194
+ use_act_ckpt_iterative_pt_sampling: false
195
+
196
+
197
+
198
+ num_init_cond_frames_for_eval: 1 # only mask on the first frame
199
+ forward_backbone_per_frame_for_eval: True
200
+
201
+
202
+ data:
203
+ train:
204
+ _target_: training.dataset.sam2_datasets.TorchTrainMixedDataset
205
+ phases_per_epoch: ${scratch.phases_per_epoch}
206
+ batch_sizes:
207
+ - ${scratch.train_batch_size}
208
+
209
+ datasets:
210
+ - _target_: training.dataset.utils.RepeatFactorWrapper
211
+ dataset:
212
+ _target_: training.dataset.utils.ConcatDataset
213
+ datasets:
214
+ - _target_: training.dataset.vos_dataset.VOSDataset
215
+ transforms: ${vos.train_transforms}
216
+ training: true
217
+ video_dataset:
218
+ _target_: training.dataset.vos_raw_dataset.PNGRawDataset
219
+ img_folder: ${dataset.img_folder}
220
+ gt_folder: ${dataset.gt_folder}
221
+ file_list_txt: ${dataset.file_list_txt}
222
+ sampler:
223
+ _target_: training.dataset.vos_sampler.RandomUniformSampler
224
+ num_frames: ${scratch.num_frames}
225
+ max_num_objects: ${scratch.max_num_objects}
226
+ multiplier: ${dataset.multiplier}
227
+ shuffle: True
228
+ num_workers: ${scratch.num_train_workers}
229
+ pin_memory: True
230
+ drop_last: True
231
+ collate_fn:
232
+ _target_: training.utils.data_utils.collate_fn
233
+ _partial_: true
234
+ dict_key: all
235
+
236
+ optim:
237
+ amp:
238
+ enabled: True
239
+ amp_dtype: bfloat16
240
+
241
+ optimizer:
242
+ _target_: torch.optim.AdamW
243
+
244
+ gradient_clip:
245
+ _target_: training.optimizer.GradientClipper
246
+ max_norm: 0.1
247
+ norm_type: 2
248
+
249
+ param_group_modifiers:
250
+ - _target_: training.optimizer.layer_decay_param_modifier
251
+ _partial_: True
252
+ layer_decay_value: 0.9
253
+ apply_to: 'image_encoder.trunk'
254
+ overrides:
255
+ - pattern: '*pos_embed*'
256
+ value: 1.0
257
+
258
+ options:
259
+ lr:
260
+ - scheduler:
261
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
262
+ start_value: ${scratch.base_lr}
263
+ end_value: ${divide:${scratch.base_lr},10}
264
+ - scheduler:
265
+ _target_: fvcore.common.param_scheduler.CosineParamScheduler
266
+ start_value: ${scratch.vision_lr}
267
+ end_value: ${divide:${scratch.vision_lr},10}
268
+ param_names:
269
+ - 'image_encoder.*'
270
+ weight_decay:
271
+ - scheduler:
272
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
273
+ value: 0.1
274
+ - scheduler:
275
+ _target_: fvcore.common.param_scheduler.ConstantParamScheduler
276
+ value: 0.0
277
+ param_names:
278
+ - '*bias*'
279
+ module_cls_names: ['torch.nn.LayerNorm']
280
+
281
+ loss:
282
+ all:
283
+ _target_: training.loss_fns.MultiStepMultiMasksAndIous
284
+ weight_dict:
285
+ loss_mask: 20
286
+ loss_dice: 1
287
+ loss_iou: 1
288
+ loss_class: 1
289
+ supervise_all_iou: true
290
+ iou_use_l1_loss: true
291
+ pred_obj_scores: true
292
+ focal_gamma_obj_score: 0.0
293
+ focal_alpha_obj_score: -1.0
294
+
295
+ distributed:
296
+ backend: nccl
297
+ find_unused_parameters: True
298
+
299
+ logging:
300
+ tensorboard_writer:
301
+ _target_: training.utils.logger.make_tensorboard_logger
302
+ log_dir: ${launcher.experiment_log_dir}/tensorboard
303
+ flush_secs: 120
304
+ should_log: True
305
+ log_dir: ${launcher.experiment_log_dir}/logs
306
+ log_freq: 10
307
+
308
+ # initialize from a SAM 2 checkpoint
309
+ checkpoint:
310
+ save_dir: ${launcher.experiment_log_dir}/checkpoints
311
+ save_freq: 0 # 0 only last checkpoint is saved.
312
+ model_weight_initializer:
313
+ _partial_: True
314
+ _target_: training.utils.checkpoint_utils.load_state_dict_into_model
315
+ strict: True
316
+ ignore_unexpected_keys: null
317
+ ignore_missing_keys: null
318
+
319
+ state_dict:
320
+ _target_: training.utils.checkpoint_utils.load_checkpoint_and_apply_kernels
321
+ checkpoint_path: ./checkpoints/sam2.1_hiera_base_plus.pt # PATH to SAM 2.1 checkpoint
322
+ ckpt_state_dict_keys: ['model']
323
+
324
+ launcher:
325
+ num_nodes: 1
326
+ gpus_per_node: 8
327
+ experiment_log_dir: null # Path to log directory, defaults to ./sam2_logs/${config_name}
328
+
329
+ # SLURM args if running on a cluster
330
+ submitit:
331
+ partition: null
332
+ account: null
333
+ qos: null
334
+ cpus_per_task: 10
335
+ use_cluster: false
336
+ timeout_hour: 24
337
+ name: null
338
+ port_range: [10000, 65000]
339
+
eval/grounded_sam/sam2/configs/sam2/sam2_hiera_b+.yaml ADDED
@@ -0,0 +1,113 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 112
12
+ num_heads: 2
13
+ neck:
14
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
15
+ position_encoding:
16
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
17
+ num_pos_feats: 256
18
+ normalize: true
19
+ scale: null
20
+ temperature: 10000
21
+ d_model: 256
22
+ backbone_channel_list: [896, 448, 224, 112]
23
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
24
+ fpn_interp_model: nearest
25
+
26
+ memory_attention:
27
+ _target_: sam2.modeling.memory_attention.MemoryAttention
28
+ d_model: 256
29
+ pos_enc_at_input: true
30
+ layer:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
32
+ activation: relu
33
+ dim_feedforward: 2048
34
+ dropout: 0.1
35
+ pos_enc_at_attn: false
36
+ self_attention:
37
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
38
+ rope_theta: 10000.0
39
+ feat_sizes: [32, 32]
40
+ embedding_dim: 256
41
+ num_heads: 1
42
+ downsample_rate: 1
43
+ dropout: 0.1
44
+ d_model: 256
45
+ pos_enc_at_cross_attn_keys: true
46
+ pos_enc_at_cross_attn_queries: false
47
+ cross_attention:
48
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
49
+ rope_theta: 10000.0
50
+ feat_sizes: [32, 32]
51
+ rope_k_repeat: True
52
+ embedding_dim: 256
53
+ num_heads: 1
54
+ downsample_rate: 1
55
+ dropout: 0.1
56
+ kv_in_dim: 64
57
+ num_layers: 4
58
+
59
+ memory_encoder:
60
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
61
+ out_dim: 64
62
+ position_encoding:
63
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
64
+ num_pos_feats: 64
65
+ normalize: true
66
+ scale: null
67
+ temperature: 10000
68
+ mask_downsampler:
69
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
70
+ kernel_size: 3
71
+ stride: 2
72
+ padding: 1
73
+ fuser:
74
+ _target_: sam2.modeling.memory_encoder.Fuser
75
+ layer:
76
+ _target_: sam2.modeling.memory_encoder.CXBlock
77
+ dim: 256
78
+ kernel_size: 7
79
+ padding: 3
80
+ layer_scale_init_value: 1e-6
81
+ use_dwconv: True # depth-wise convs
82
+ num_layers: 2
83
+
84
+ num_maskmem: 7
85
+ image_size: 1024
86
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
87
+ sigmoid_scale_for_mem_enc: 20.0
88
+ sigmoid_bias_for_mem_enc: -10.0
89
+ use_mask_input_as_output_without_sam: true
90
+ # Memory
91
+ directly_add_no_mem_embed: true
92
+ # use high-resolution feature map in the SAM mask decoder
93
+ use_high_res_features_in_sam: true
94
+ # output 3 masks on the first click on initial conditioning frames
95
+ multimask_output_in_sam: true
96
+ # SAM heads
97
+ iou_prediction_use_sigmoid: True
98
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
99
+ use_obj_ptrs_in_encoder: true
100
+ add_tpos_enc_to_obj_ptrs: false
101
+ only_obj_ptrs_in_the_past_for_eval: true
102
+ # object occlusion prediction
103
+ pred_obj_scores: true
104
+ pred_obj_scores_mlp: true
105
+ fixed_no_obj_ptr: true
106
+ # multimask tracking settings
107
+ multimask_output_for_tracking: true
108
+ use_multimask_token_for_obj_ptr: true
109
+ multimask_min_pt_num: 0
110
+ multimask_max_pt_num: 1
111
+ use_mlp_for_obj_ptr_proj: true
112
+ # Compilation flag
113
+ compile_image_encoder: False
eval/grounded_sam/sam2/configs/sam2/sam2_hiera_l.yaml ADDED
@@ -0,0 +1,117 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # @package _global_
2
+
3
+ # Model
4
+ model:
5
+ _target_: sam2.modeling.sam2_base.SAM2Base
6
+ image_encoder:
7
+ _target_: sam2.modeling.backbones.image_encoder.ImageEncoder
8
+ scalp: 1
9
+ trunk:
10
+ _target_: sam2.modeling.backbones.hieradet.Hiera
11
+ embed_dim: 144
12
+ num_heads: 2
13
+ stages: [2, 6, 36, 4]
14
+ global_att_blocks: [23, 33, 43]
15
+ window_pos_embed_bkg_spatial_size: [7, 7]
16
+ window_spec: [8, 4, 16, 8]
17
+ neck:
18
+ _target_: sam2.modeling.backbones.image_encoder.FpnNeck
19
+ position_encoding:
20
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
21
+ num_pos_feats: 256
22
+ normalize: true
23
+ scale: null
24
+ temperature: 10000
25
+ d_model: 256
26
+ backbone_channel_list: [1152, 576, 288, 144]
27
+ fpn_top_down_levels: [2, 3] # output level 0 and 1 directly use the backbone features
28
+ fpn_interp_model: nearest
29
+
30
+ memory_attention:
31
+ _target_: sam2.modeling.memory_attention.MemoryAttention
32
+ d_model: 256
33
+ pos_enc_at_input: true
34
+ layer:
35
+ _target_: sam2.modeling.memory_attention.MemoryAttentionLayer
36
+ activation: relu
37
+ dim_feedforward: 2048
38
+ dropout: 0.1
39
+ pos_enc_at_attn: false
40
+ self_attention:
41
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
42
+ rope_theta: 10000.0
43
+ feat_sizes: [32, 32]
44
+ embedding_dim: 256
45
+ num_heads: 1
46
+ downsample_rate: 1
47
+ dropout: 0.1
48
+ d_model: 256
49
+ pos_enc_at_cross_attn_keys: true
50
+ pos_enc_at_cross_attn_queries: false
51
+ cross_attention:
52
+ _target_: sam2.modeling.sam.transformer.RoPEAttention
53
+ rope_theta: 10000.0
54
+ feat_sizes: [32, 32]
55
+ rope_k_repeat: True
56
+ embedding_dim: 256
57
+ num_heads: 1
58
+ downsample_rate: 1
59
+ dropout: 0.1
60
+ kv_in_dim: 64
61
+ num_layers: 4
62
+
63
+ memory_encoder:
64
+ _target_: sam2.modeling.memory_encoder.MemoryEncoder
65
+ out_dim: 64
66
+ position_encoding:
67
+ _target_: sam2.modeling.position_encoding.PositionEmbeddingSine
68
+ num_pos_feats: 64
69
+ normalize: true
70
+ scale: null
71
+ temperature: 10000
72
+ mask_downsampler:
73
+ _target_: sam2.modeling.memory_encoder.MaskDownSampler
74
+ kernel_size: 3
75
+ stride: 2
76
+ padding: 1
77
+ fuser:
78
+ _target_: sam2.modeling.memory_encoder.Fuser
79
+ layer:
80
+ _target_: sam2.modeling.memory_encoder.CXBlock
81
+ dim: 256
82
+ kernel_size: 7
83
+ padding: 3
84
+ layer_scale_init_value: 1e-6
85
+ use_dwconv: True # depth-wise convs
86
+ num_layers: 2
87
+
88
+ num_maskmem: 7
89
+ image_size: 1024
90
+ # apply scaled sigmoid on mask logits for memory encoder, and directly feed input mask as output mask
91
+ sigmoid_scale_for_mem_enc: 20.0
92
+ sigmoid_bias_for_mem_enc: -10.0
93
+ use_mask_input_as_output_without_sam: true
94
+ # Memory
95
+ directly_add_no_mem_embed: true
96
+ # use high-resolution feature map in the SAM mask decoder
97
+ use_high_res_features_in_sam: true
98
+ # output 3 masks on the first click on initial conditioning frames
99
+ multimask_output_in_sam: true
100
+ # SAM heads
101
+ iou_prediction_use_sigmoid: True
102
+ # cross-attend to object pointers from other frames (based on SAM output tokens) in the encoder
103
+ use_obj_ptrs_in_encoder: true
104
+ add_tpos_enc_to_obj_ptrs: false
105
+ only_obj_ptrs_in_the_past_for_eval: true
106
+ # object occlusion prediction
107
+ pred_obj_scores: true
108
+ pred_obj_scores_mlp: true
109
+ fixed_no_obj_ptr: true
110
+ # multimask tracking settings
111
+ multimask_output_for_tracking: true
112
+ use_multimask_token_for_obj_ptr: true
113
+ multimask_min_pt_num: 0
114
+ multimask_max_pt_num: 1
115
+ use_mlp_for_obj_ptr_proj: true
116
+ # Compilation flag
117
+ compile_image_encoder: False