Update src/flux/generate.py
Browse files- src/flux/generate.py +798 -798
src/flux/generate.py
CHANGED
@@ -21,818 +21,818 @@ from typing import List, Union, Optional, Dict, Any, Callable
|
|
21 |
from src.flux.transformer import tranformer_forward
|
22 |
from src.flux.condition import Condition
|
23 |
|
24 |
-
# from diffusers.pipelines.flux.pipeline_flux import (
|
25 |
-
# FluxPipelineOutput,
|
26 |
-
# calculate_shift,
|
27 |
-
# retrieve_timesteps,
|
28 |
-
# np,
|
|
|
|
|
|
|
29 |
# )
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
from src.
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
|
122 |
-
|
123 |
-
|
124 |
-
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
)
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
|
137 |
-
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
model_config["use_attention_double"] = False
|
145 |
-
model_config["use_attention_single"] = False
|
146 |
-
use_attention = False
|
147 |
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
|
153 |
-
|
154 |
-
|
155 |
-
|
156 |
-
|
157 |
-
|
158 |
-
|
159 |
-
|
160 |
-
|
161 |
-
|
162 |
-
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
169 |
-
|
170 |
-
|
171 |
-
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
240 |
-
|
241 |
-
|
242 |
-
|
243 |
-
|
244 |
-
|
245 |
-
|
246 |
-
|
247 |
-
|
248 |
-
|
249 |
-
|
250 |
-
|
251 |
-
|
252 |
-
|
253 |
-
|
254 |
-
|
255 |
-
|
256 |
-
|
257 |
-
|
258 |
-
|
259 |
-
|
260 |
-
|
261 |
-
|
262 |
-
|
263 |
-
|
264 |
-
|
265 |
-
|
266 |
-
|
267 |
-
|
268 |
-
|
269 |
-
|
270 |
-
|
271 |
-
|
272 |
-
|
273 |
-
|
274 |
-
|
275 |
-
|
276 |
-
|
277 |
-
|
278 |
-
|
279 |
-
|
280 |
-
|
281 |
-
|
282 |
-
|
283 |
-
|
284 |
-
|
285 |
-
|
286 |
-
|
287 |
-
|
288 |
-
|
289 |
-
|
290 |
-
|
291 |
-
|
292 |
-
|
293 |
-
|
294 |
-
|
295 |
-
|
296 |
-
|
297 |
-
|
298 |
-
|
299 |
-
|
300 |
-
|
301 |
-
|
302 |
-
|
303 |
-
|
304 |
-
|
305 |
-
|
306 |
-
|
307 |
-
|
308 |
-
|
309 |
-
|
310 |
-
|
311 |
-
|
312 |
-
|
313 |
-
|
314 |
-
|
315 |
-
|
316 |
-
|
317 |
-
|
318 |
-
|
319 |
|
320 |
-
|
321 |
-
|
322 |
-
|
323 |
-
|
324 |
-
|
325 |
-
|
326 |
-
|
327 |
-
|
328 |
-
|
329 |
-
|
330 |
-
|
331 |
-
|
332 |
-
|
333 |
-
|
334 |
-
|
335 |
-
|
336 |
-
|
337 |
-
|
338 |
-
|
339 |
-
|
340 |
-
|
341 |
-
|
342 |
-
|
343 |
-
|
344 |
-
|
345 |
-
|
346 |
-
|
347 |
|
348 |
-
|
349 |
-
|
350 |
-
|
351 |
-
|
352 |
-
|
353 |
-
|
354 |
-
|
355 |
|
356 |
-
|
357 |
-
|
358 |
-
|
359 |
-
|
360 |
-
|
361 |
-
|
362 |
-
|
363 |
|
364 |
-
|
365 |
-
|
366 |
-
|
367 |
-
|
368 |
-
|
369 |
-
|
370 |
-
|
371 |
-
|
372 |
-
|
373 |
-
|
374 |
-
|
375 |
-
|
376 |
-
|
377 |
-
|
378 |
-
|
379 |
-
|
380 |
-
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
-
|
388 |
-
|
389 |
|
390 |
-
|
391 |
-
|
392 |
-
|
393 |
-
|
394 |
-
|
395 |
-
|
396 |
-
|
397 |
-
|
398 |
|
399 |
-
|
400 |
-
|
401 |
-
|
402 |
-
|
403 |
-
|
404 |
-
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
|
409 |
-
|
410 |
-
|
411 |
-
|
412 |
-
|
413 |
-
|
414 |
-
|
415 |
-
|
416 |
-
|
417 |
-
|
418 |
-
|
419 |
-
|
420 |
-
|
421 |
-
|
422 |
-
|
423 |
-
|
424 |
-
|
425 |
-
|
426 |
-
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
431 |
-
|
432 |
-
|
433 |
-
|
434 |
-
|
435 |
-
|
436 |
-
|
437 |
-
|
438 |
-
|
439 |
-
|
440 |
-
|
441 |
-
|
442 |
-
|
443 |
-
|
444 |
-
|
445 |
-
|
446 |
-
|
447 |
-
|
448 |
-
|
449 |
-
|
450 |
-
|
451 |
-
|
452 |
-
|
453 |
-
|
454 |
-
|
455 |
-
|
456 |
-
|
457 |
-
|
458 |
-
|
459 |
-
|
460 |
-
|
461 |
-
|
462 |
-
|
463 |
-
|
464 |
-
|
465 |
-
|
466 |
-
|
467 |
-
|
468 |
-
|
469 |
-
|
470 |
-
|
471 |
-
|
472 |
-
|
473 |
-
|
474 |
-
|
475 |
-
|
476 |
-
|
477 |
-
|
478 |
-
|
479 |
-
|
480 |
-
|
481 |
-
|
482 |
-
|
483 |
-
|
484 |
-
|
485 |
-
|
486 |
-
|
487 |
-
|
488 |
-
|
489 |
-
|
490 |
-
|
491 |
-
|
492 |
-
|
493 |
-
|
494 |
-
|
495 |
-
|
496 |
-
|
497 |
-
|
498 |
-
|
499 |
-
|
500 |
-
|
501 |
-
|
502 |
-
|
503 |
-
|
504 |
-
|
505 |
-
|
506 |
-
|
507 |
-
|
508 |
-
|
509 |
-
|
510 |
-
|
511 |
-
|
512 |
-
|
513 |
-
|
514 |
-
@torch.no_grad()
|
515 |
-
def generate_from_test_sample(
|
516 |
-
|
517 |
-
|
518 |
-
|
519 |
-
|
520 |
-
|
521 |
-
|
522 |
-
|
523 |
-
|
524 |
-
|
525 |
-
|
526 |
-
|
527 |
-
|
528 |
-
|
529 |
-
|
530 |
-
|
531 |
-
|
532 |
-
):
|
533 |
-
|
534 |
-
|
535 |
-
|
536 |
-
|
537 |
-
|
538 |
-
|
539 |
-
|
540 |
-
|
541 |
-
|
542 |
-
|
543 |
-
|
544 |
-
|
545 |
-
|
546 |
-
|
547 |
-
|
548 |
-
|
549 |
-
|
550 |
-
|
551 |
|
552 |
-
|
553 |
-
|
554 |
-
|
555 |
-
|
556 |
-
|
557 |
-
|
558 |
-
|
559 |
-
|
560 |
-
|
561 |
-
|
562 |
-
|
563 |
-
|
564 |
-
|
565 |
-
|
566 |
-
|
567 |
-
|
568 |
-
|
569 |
-
|
570 |
-
|
571 |
-
|
572 |
-
|
573 |
-
|
574 |
-
|
575 |
-
|
576 |
-
|
577 |
-
|
578 |
-
|
579 |
-
|
580 |
-
|
581 |
-
|
582 |
-
|
583 |
-
|
584 |
-
|
585 |
-
|
586 |
-
|
587 |
-
|
588 |
-
|
589 |
-
|
590 |
-
|
591 |
-
|
592 |
-
|
593 |
-
|
594 |
-
|
595 |
-
|
596 |
-
|
597 |
-
|
598 |
-
|
599 |
-
|
600 |
-
|
601 |
-
|
602 |
-
|
603 |
-
|
604 |
-
|
605 |
-
|
606 |
-
|
607 |
-
|
608 |
-
|
609 |
-
|
610 |
|
611 |
-
|
612 |
|
613 |
-
|
614 |
-
|
615 |
-
|
616 |
|
617 |
-
|
618 |
-
|
619 |
-
|
620 |
-
|
621 |
-
|
622 |
-
|
623 |
-
|
624 |
-
|
625 |
-
|
626 |
-
|
627 |
-
|
628 |
-
|
629 |
-
|
630 |
-
|
631 |
-
|
632 |
-
|
633 |
-
|
634 |
|
635 |
-
|
636 |
-
|
637 |
-
|
638 |
-
|
639 |
-
|
640 |
-
|
641 |
-
|
642 |
-
|
643 |
-
|
644 |
-
|
645 |
-
|
646 |
|
647 |
-
|
648 |
-
|
649 |
-
|
650 |
-
|
651 |
-
|
652 |
-
|
653 |
-
|
654 |
-
|
655 |
-
|
656 |
-
|
657 |
-
|
658 |
-
|
659 |
-
|
660 |
-
|
661 |
-
|
662 |
-
|
663 |
-
|
664 |
-
|
665 |
-
|
666 |
-
|
667 |
-
|
668 |
-
|
669 |
-
|
670 |
-
|
671 |
-
|
672 |
-
|
673 |
-
|
674 |
-
|
675 |
-
|
676 |
-
|
677 |
-
|
678 |
-
|
679 |
-
|
680 |
|
681 |
-
|
682 |
-
|
683 |
-
|
684 |
-
|
685 |
-
|
686 |
-
|
687 |
-
|
688 |
-
|
689 |
-
|
690 |
-
|
691 |
-
|
692 |
-
|
693 |
-
|
694 |
-
|
695 |
-
|
696 |
-
|
697 |
-
|
698 |
-
|
699 |
-
|
700 |
-
|
701 |
-
|
702 |
-
|
703 |
-
|
704 |
-
|
705 |
-
|
706 |
-
|
707 |
-
|
708 |
-
|
709 |
-
|
710 |
|
711 |
-
|
712 |
-
|
713 |
-
|
714 |
-
|
715 |
-
|
716 |
-
|
717 |
-
|
718 |
-
|
719 |
-
|
720 |
-
|
721 |
-
|
722 |
-
|
723 |
-
|
724 |
-
|
725 |
-
|
726 |
-
|
727 |
-
|
728 |
-
|
729 |
-
|
730 |
-
|
731 |
-
|
732 |
-
|
733 |
-
|
734 |
-
|
735 |
-
|
736 |
-
|
737 |
-
|
738 |
-
|
739 |
-
|
740 |
-
|
741 |
-
|
742 |
-
|
743 |
-
|
744 |
-
|
745 |
-
|
746 |
-
|
747 |
-
|
748 |
-
|
749 |
-
|
750 |
-
|
751 |
-
|
752 |
-
|
753 |
-
|
754 |
-
|
755 |
-
|
756 |
-
|
757 |
-
|
758 |
-
|
759 |
-
|
760 |
-
|
761 |
-
|
762 |
-
|
763 |
-
|
764 |
-
|
765 |
-
|
766 |
-
|
767 |
-
|
768 |
-
|
769 |
-
|
770 |
-
|
771 |
-
|
772 |
-
|
773 |
-
|
774 |
-
|
775 |
-
|
776 |
-
|
777 |
-
|
778 |
-
|
779 |
-
|
780 |
-
|
781 |
-
|
782 |
-
|
783 |
-
|
784 |
-
|
785 |
-
|
786 |
-
|
787 |
-
|
788 |
-
|
789 |
-
|
790 |
-
|
791 |
-
|
792 |
-
|
793 |
-
|
794 |
-
|
795 |
-
|
796 |
-
|
797 |
-
|
798 |
-
|
799 |
-
|
800 |
-
|
801 |
-
|
802 |
-
|
803 |
-
|
804 |
-
|
805 |
-
|
806 |
-
|
807 |
-
|
808 |
-
|
809 |
-
|
810 |
-
|
811 |
-
|
812 |
-
|
813 |
-
|
814 |
-
|
815 |
-
|
816 |
-
|
817 |
-
|
818 |
-
|
819 |
-
|
820 |
-
|
821 |
-
|
822 |
-
|
823 |
-
|
824 |
-
|
825 |
-
|
826 |
-
|
827 |
-
|
828 |
-
|
829 |
-
|
830 |
-
|
831 |
-
|
832 |
-
|
833 |
-
|
834 |
-
|
835 |
-
|
836 |
-
|
837 |
-
|
838 |
-
|
|
|
21 |
from src.flux.transformer import tranformer_forward
|
22 |
from src.flux.condition import Condition
|
23 |
|
24 |
+
# # from diffusers.pipelines.flux.pipeline_flux import (
|
25 |
+
# # FluxPipelineOutput,
|
26 |
+
# # calculate_shift,
|
27 |
+
# # retrieve_timesteps,
|
28 |
+
# # np,
|
29 |
+
# # )
|
30 |
+
# from src.flux.pipeline_tools import (
|
31 |
+
# encode_prompt_with_clip_t5, tokenize_t5_prompt, clear_attn_maps, encode_vae_images
|
32 |
# )
|
33 |
+
|
34 |
+
# from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, decode_vae_images, \
|
35 |
+
# save_attention_maps, gather_attn_maps, clear_attn_maps, load_dit_lora, quantization
|
36 |
+
|
37 |
+
# from src.utils.data_utils import pad_to_square, pad_to_target, pil2tensor, get_closest_ratio, get_aspect_ratios
|
38 |
+
# from src.utils.modulation_utils import get_word_index, unpad_input_ids
|
39 |
+
|
40 |
+
# def get_config(config_path: str = None):
|
41 |
+
# config_path = config_path or os.environ.get("XFL_CONFIG")
|
42 |
+
# if not config_path:
|
43 |
+
# return {}
|
44 |
+
# with open(config_path, "r") as f:
|
45 |
+
# config = yaml.safe_load(f)
|
46 |
+
# return config
|
47 |
+
|
48 |
+
|
49 |
+
# def prepare_params(
|
50 |
+
# prompt: Union[str, List[str]] = None,
|
51 |
+
# prompt_2: Optional[Union[str, List[str]]] = None,
|
52 |
+
# height: Optional[int] = 512,
|
53 |
+
# width: Optional[int] = 512,
|
54 |
+
# num_inference_steps: int = 28,
|
55 |
+
# timesteps: List[int] = None,
|
56 |
+
# guidance_scale: float = 3.5,
|
57 |
+
# num_images_per_prompt: Optional[int] = 1,
|
58 |
+
# generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
59 |
+
# latents: Optional[torch.FloatTensor] = None,
|
60 |
+
# prompt_embeds: Optional[torch.FloatTensor] = None,
|
61 |
+
# pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
62 |
+
# output_type: Optional[str] = "pil",
|
63 |
+
# return_dict: bool = True,
|
64 |
+
# joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
+
# callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
66 |
+
# callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
67 |
+
# max_sequence_length: int = 512,
|
68 |
+
# verbose: bool = False,
|
69 |
+
# **kwargs: dict,
|
70 |
+
# ):
|
71 |
+
# return (
|
72 |
+
# prompt,
|
73 |
+
# prompt_2,
|
74 |
+
# height,
|
75 |
+
# width,
|
76 |
+
# num_inference_steps,
|
77 |
+
# timesteps,
|
78 |
+
# guidance_scale,
|
79 |
+
# num_images_per_prompt,
|
80 |
+
# generator,
|
81 |
+
# latents,
|
82 |
+
# prompt_embeds,
|
83 |
+
# pooled_prompt_embeds,
|
84 |
+
# output_type,
|
85 |
+
# return_dict,
|
86 |
+
# joint_attention_kwargs,
|
87 |
+
# callback_on_step_end,
|
88 |
+
# callback_on_step_end_tensor_inputs,
|
89 |
+
# max_sequence_length,
|
90 |
+
# verbose,
|
91 |
+
# )
|
92 |
+
|
93 |
+
|
94 |
+
# def seed_everything(seed: int = 42):
|
95 |
+
# torch.backends.cudnn.deterministic = True
|
96 |
+
# torch.manual_seed(seed)
|
97 |
+
# np.random.seed(seed)
|
98 |
+
|
99 |
+
|
100 |
+
# @torch.no_grad()
|
101 |
+
# def generate(
|
102 |
+
# pipeline: FluxPipeline,
|
103 |
+
# vae_conditions: List[Condition] = None,
|
104 |
+
# config_path: str = None,
|
105 |
+
# model_config: Optional[Dict[str, Any]] = {},
|
106 |
+
# vae_condition_scale: float = 1.0,
|
107 |
+
# default_lora: bool = False,
|
108 |
+
# condition_pad_to: str = "square",
|
109 |
+
# condition_size: int = 512,
|
110 |
+
# text_cond_mask: Optional[torch.FloatTensor] = None,
|
111 |
+
# delta_emb: Optional[torch.FloatTensor] = None,
|
112 |
+
# delta_emb_pblock: Optional[torch.FloatTensor] = None,
|
113 |
+
# delta_emb_mask: Optional[torch.FloatTensor] = None,
|
114 |
+
# delta_start_ends = None,
|
115 |
+
# condition_latents = None,
|
116 |
+
# condition_ids = None,
|
117 |
+
# mod_adapter = None,
|
118 |
+
# store_attn_map: bool = False,
|
119 |
+
# vae_skip_iter: str = None,
|
120 |
+
# control_weight_lambda: str = None,
|
121 |
+
# double_attention: bool = False,
|
122 |
+
# single_attention: bool = False,
|
123 |
+
# ip_scale: str = None,
|
124 |
+
# use_latent_sblora_control: bool = False,
|
125 |
+
# latent_sblora_scale: str = None,
|
126 |
+
# use_condition_sblora_control: bool = False,
|
127 |
+
# condition_sblora_scale: str = None,
|
128 |
+
# idips = None,
|
129 |
+
# **params: dict,
|
130 |
+
# ):
|
131 |
+
# model_config = model_config or get_config(config_path).get("model", {})
|
132 |
+
|
133 |
+
# vae_skip_iter = model_config.get("vae_skip_iter", vae_skip_iter)
|
134 |
+
# double_attention = model_config.get("double_attention", double_attention)
|
135 |
+
# single_attention = model_config.get("single_attention", single_attention)
|
136 |
+
# control_weight_lambda = model_config.get("control_weight_lambda", control_weight_lambda)
|
137 |
+
# ip_scale = model_config.get("ip_scale", ip_scale)
|
138 |
+
# use_latent_sblora_control = model_config.get("use_latent_sblora_control", use_latent_sblora_control)
|
139 |
+
# use_condition_sblora_control = model_config.get("use_condition_sblora_control", use_condition_sblora_control)
|
140 |
+
|
141 |
+
# latent_sblora_scale = model_config.get("latent_sblora_scale", latent_sblora_scale)
|
142 |
+
# condition_sblora_scale = model_config.get("condition_sblora_scale", condition_sblora_scale)
|
143 |
+
|
144 |
+
# model_config["use_attention_double"] = False
|
145 |
+
# model_config["use_attention_single"] = False
|
146 |
+
# use_attention = False
|
|
|
|
|
|
|
147 |
|
148 |
+
# if idips is not None:
|
149 |
+
# if control_weight_lambda != "no":
|
150 |
+
# parts = control_weight_lambda.split(',')
|
151 |
+
# new_parts = []
|
152 |
+
# for part in parts:
|
153 |
+
# if ':' in part:
|
154 |
+
# left, right = part.split(':')
|
155 |
+
# values = right.split('/')
|
156 |
+
# # 保存整体值
|
157 |
+
# global_value = values[0]
|
158 |
+
# id_value = values[1]
|
159 |
+
# ip_value = values[2]
|
160 |
+
# new_values = [global_value]
|
161 |
+
# for is_id in idips:
|
162 |
+
# if is_id:
|
163 |
+
# new_values.append(id_value)
|
164 |
+
# else:
|
165 |
+
# new_values.append(ip_value)
|
166 |
+
# new_part = f"{left}:{('/'.join(new_values))}"
|
167 |
+
# new_parts.append(new_part)
|
168 |
+
# else:
|
169 |
+
# new_parts.append(part)
|
170 |
+
# control_weight_lambda = ','.join(new_parts)
|
171 |
+
|
172 |
+
# if vae_condition_scale != 1:
|
173 |
+
# for name, module in pipeline.transformer.named_modules():
|
174 |
+
# if not name.endswith(".attn"):
|
175 |
+
# continue
|
176 |
+
# module.c_factor = torch.ones(1, 1) * vae_condition_scale
|
177 |
+
|
178 |
+
# self = pipeline
|
179 |
+
# (
|
180 |
+
# prompt,
|
181 |
+
# prompt_2,
|
182 |
+
# height,
|
183 |
+
# width,
|
184 |
+
# num_inference_steps,
|
185 |
+
# timesteps,
|
186 |
+
# guidance_scale,
|
187 |
+
# num_images_per_prompt,
|
188 |
+
# generator,
|
189 |
+
# latents,
|
190 |
+
# prompt_embeds,
|
191 |
+
# pooled_prompt_embeds,
|
192 |
+
# output_type,
|
193 |
+
# return_dict,
|
194 |
+
# joint_attention_kwargs,
|
195 |
+
# callback_on_step_end,
|
196 |
+
# callback_on_step_end_tensor_inputs,
|
197 |
+
# max_sequence_length,
|
198 |
+
# verbose,
|
199 |
+
# ) = prepare_params(**params)
|
200 |
+
|
201 |
+
# height = height or self.default_sample_size * self.vae_scale_factor
|
202 |
+
# width = width or self.default_sample_size * self.vae_scale_factor
|
203 |
+
|
204 |
+
# # 1. Check inputs. Raise error if not correct
|
205 |
+
# self.check_inputs(
|
206 |
+
# prompt,
|
207 |
+
# prompt_2,
|
208 |
+
# height,
|
209 |
+
# width,
|
210 |
+
# prompt_embeds=prompt_embeds,
|
211 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
212 |
+
# callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
213 |
+
# max_sequence_length=max_sequence_length,
|
214 |
+
# )
|
215 |
+
|
216 |
+
# self._guidance_scale = guidance_scale
|
217 |
+
# self._joint_attention_kwargs = joint_attention_kwargs
|
218 |
+
# self._interrupt = False
|
219 |
+
|
220 |
+
# # 2. Define call parameters
|
221 |
+
# if prompt is not None and isinstance(prompt, str):
|
222 |
+
# batch_size = 1
|
223 |
+
# elif prompt is not None and isinstance(prompt, list):
|
224 |
+
# batch_size = len(prompt)
|
225 |
+
# else:
|
226 |
+
# batch_size = prompt_embeds.shape[0]
|
227 |
+
|
228 |
+
# device = self._execution_device
|
229 |
+
|
230 |
+
# lora_scale = (
|
231 |
+
# self.joint_attention_kwargs.get("scale", None)
|
232 |
+
# if self.joint_attention_kwargs is not None
|
233 |
+
# else None
|
234 |
+
# )
|
235 |
+
# (
|
236 |
+
# t5_prompt_embeds,
|
237 |
+
# pooled_prompt_embeds,
|
238 |
+
# text_ids,
|
239 |
+
# ) = encode_prompt_with_clip_t5(
|
240 |
+
# self=self,
|
241 |
+
# prompt="" if self.text_encoder_2 is None else prompt,
|
242 |
+
# prompt_2=None,
|
243 |
+
# prompt_embeds=prompt_embeds,
|
244 |
+
# pooled_prompt_embeds=pooled_prompt_embeds,
|
245 |
+
# device=device,
|
246 |
+
# num_images_per_prompt=num_images_per_prompt,
|
247 |
+
# max_sequence_length=max_sequence_length,
|
248 |
+
# lora_scale=lora_scale,
|
249 |
+
# )
|
250 |
+
|
251 |
+
# # 4. Prepare latent variables
|
252 |
+
# num_channels_latents = self.transformer.config.in_channels // 4
|
253 |
+
# latents, latent_image_ids = self.prepare_latents(
|
254 |
+
# batch_size * num_images_per_prompt,
|
255 |
+
# num_channels_latents,
|
256 |
+
# height,
|
257 |
+
# width,
|
258 |
+
# pooled_prompt_embeds.dtype,
|
259 |
+
# device,
|
260 |
+
# generator,
|
261 |
+
# latents,
|
262 |
+
# )
|
263 |
+
|
264 |
+
# latent_height = height // 16
|
265 |
+
|
266 |
+
# # 5. Prepare timesteps
|
267 |
+
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
268 |
+
# image_seq_len = latents.shape[1]
|
269 |
+
# mu = calculate_shift(
|
270 |
+
# image_seq_len,
|
271 |
+
# self.scheduler.config.base_image_seq_len,
|
272 |
+
# self.scheduler.config.max_image_seq_len,
|
273 |
+
# self.scheduler.config.base_shift,
|
274 |
+
# self.scheduler.config.max_shift,
|
275 |
+
# )
|
276 |
+
# timesteps, num_inference_steps = retrieve_timesteps(
|
277 |
+
# self.scheduler,
|
278 |
+
# num_inference_steps,
|
279 |
+
# device,
|
280 |
+
# timesteps,
|
281 |
+
# sigmas,
|
282 |
+
# mu=mu,
|
283 |
+
# )
|
284 |
+
# num_warmup_steps = max(
|
285 |
+
# len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
286 |
+
# )
|
287 |
+
# self._num_timesteps = len(timesteps)
|
288 |
+
|
289 |
+
# attn_map = None
|
290 |
+
|
291 |
+
# # 6. Denoising loop
|
292 |
+
# with self.progress_bar(total=num_inference_steps) as progress_bar:
|
293 |
+
# totalsteps = timesteps[0]
|
294 |
+
# if control_weight_lambda is not None:
|
295 |
+
# print("control_weight_lambda", control_weight_lambda)
|
296 |
+
# control_weight_lambda_schedule = []
|
297 |
+
# for scale_str in control_weight_lambda.split(','):
|
298 |
+
# time_region, scale = scale_str.split(':')
|
299 |
+
# start, end = time_region.split('-')
|
300 |
+
# scales = [float(s) for s in scale.split('/')]
|
301 |
+
# control_weight_lambda_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, scales])
|
302 |
+
|
303 |
+
# if ip_scale is not None:
|
304 |
+
# print("ip_scale", ip_scale)
|
305 |
+
# ip_scale_schedule = []
|
306 |
+
# for scale_str in ip_scale.split(','):
|
307 |
+
# time_region, scale = scale_str.split(':')
|
308 |
+
# start, end = time_region.split('-')
|
309 |
+
# ip_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
310 |
+
|
311 |
+
# if use_latent_sblora_control:
|
312 |
+
# if latent_sblora_scale is not None:
|
313 |
+
# print("latent_sblora_scale", latent_sblora_scale)
|
314 |
+
# latent_sblora_scale_schedule = []
|
315 |
+
# for scale_str in latent_sblora_scale.split(','):
|
316 |
+
# time_region, scale = scale_str.split(':')
|
317 |
+
# start, end = time_region.split('-')
|
318 |
+
# latent_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
319 |
|
320 |
+
# if use_condition_sblora_control:
|
321 |
+
# if condition_sblora_scale is not None:
|
322 |
+
# print("condition_sblora_scale", condition_sblora_scale)
|
323 |
+
# condition_sblora_scale_schedule = []
|
324 |
+
# for scale_str in condition_sblora_scale.split(','):
|
325 |
+
# time_region, scale = scale_str.split(':')
|
326 |
+
# start, end = time_region.split('-')
|
327 |
+
# condition_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
328 |
+
|
329 |
+
|
330 |
+
# if vae_skip_iter is not None:
|
331 |
+
# print("vae_skip_iter", vae_skip_iter)
|
332 |
+
# vae_skip_iter_schedule = []
|
333 |
+
# for scale_str in vae_skip_iter.split(','):
|
334 |
+
# time_region, scale = scale_str.split(':')
|
335 |
+
# start, end = time_region.split('-')
|
336 |
+
# vae_skip_iter_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
337 |
+
|
338 |
+
# if control_weight_lambda is not None and attn_map is None:
|
339 |
+
# batch_size = latents.shape[0]
|
340 |
+
# latent_width = latents.shape[1]//latent_height
|
341 |
+
# attn_map = torch.ones(batch_size, latent_height, latent_width, 128, device=latents.device, dtype=torch.bfloat16)
|
342 |
+
# print("contol_weight_only", attn_map.shape)
|
343 |
+
|
344 |
+
# self.scheduler.set_begin_index(0)
|
345 |
+
# self.scheduler._init_step_index(0)
|
346 |
+
# for i, t in enumerate(timesteps):
|
347 |
|
348 |
+
# if control_weight_lambda is not None:
|
349 |
+
# cur_control_weight_lambda = []
|
350 |
+
# for start, end, scale in control_weight_lambda_schedule:
|
351 |
+
# if t <= start and t >= end:
|
352 |
+
# cur_control_weight_lambda = scale
|
353 |
+
# break
|
354 |
+
# print(f"timestep:{t}, cur_control_weight_lambda:{cur_control_weight_lambda}")
|
355 |
|
356 |
+
# if cur_control_weight_lambda:
|
357 |
+
# model_config["use_attention_single"] = True
|
358 |
+
# use_attention = True
|
359 |
+
# model_config["use_atten_lambda"] = cur_control_weight_lambda
|
360 |
+
# else:
|
361 |
+
# model_config["use_attention_single"] = False
|
362 |
+
# use_attention = False
|
363 |
|
364 |
+
# if self.interrupt:
|
365 |
+
# continue
|
366 |
+
|
367 |
+
# if isinstance(delta_emb, list):
|
368 |
+
# cur_delta_emb = delta_emb[i]
|
369 |
+
# cur_delta_emb_pblock = delta_emb_pblock[i]
|
370 |
+
# cur_delta_emb_mask = delta_emb_mask[i]
|
371 |
+
# else:
|
372 |
+
# cur_delta_emb = delta_emb
|
373 |
+
# cur_delta_emb_pblock = delta_emb_pblock
|
374 |
+
# cur_delta_emb_mask = delta_emb_mask
|
375 |
+
|
376 |
+
|
377 |
+
# # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
378 |
+
# timestep = t.expand(latents.shape[0]).to(latents.dtype) / 1000
|
379 |
+
# prompt_embeds = t5_prompt_embeds
|
380 |
+
# text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=prompt_embeds.dtype)
|
381 |
+
|
382 |
+
# # handle guidance
|
383 |
+
# if self.transformer.config.guidance_embeds:
|
384 |
+
# guidance = torch.tensor([guidance_scale], device=device)
|
385 |
+
# guidance = guidance.expand(latents.shape[0])
|
386 |
+
# else:
|
387 |
+
# guidance = None
|
388 |
+
# self.transformer.enable_lora()
|
389 |
|
390 |
+
# lora_weight = 1
|
391 |
+
# if ip_scale is not None:
|
392 |
+
# lora_weight = 0
|
393 |
+
# for start, end, scale in ip_scale_schedule:
|
394 |
+
# if t <= start and t >= end:
|
395 |
+
# lora_weight = scale
|
396 |
+
# break
|
397 |
+
# if lora_weight != 1: print(f"timestep:{t}, lora_weights:{lora_weight}")
|
398 |
|
399 |
+
# latent_sblora_weight = None
|
400 |
+
# if use_latent_sblora_control:
|
401 |
+
# if latent_sblora_scale is not None:
|
402 |
+
# latent_sblora_weight = 0
|
403 |
+
# for start, end, scale in latent_sblora_scale_schedule:
|
404 |
+
# if t <= start and t >= end:
|
405 |
+
# latent_sblora_weight = scale
|
406 |
+
# break
|
407 |
+
# if latent_sblora_weight != 1: print(f"timestep:{t}, latent_sblora_weight:{latent_sblora_weight}")
|
408 |
|
409 |
+
# condition_sblora_weight = None
|
410 |
+
# if use_condition_sblora_control:
|
411 |
+
# if condition_sblora_scale is not None:
|
412 |
+
# condition_sblora_weight = 0
|
413 |
+
# for start, end, scale in condition_sblora_scale_schedule:
|
414 |
+
# if t <= start and t >= end:
|
415 |
+
# condition_sblora_weight = scale
|
416 |
+
# break
|
417 |
+
# if condition_sblora_weight !=1: print(f"timestep:{t}, condition_sblora_weight:{condition_sblora_weight}")
|
418 |
+
|
419 |
+
# vae_skip_iter_t = False
|
420 |
+
# if vae_skip_iter is not None:
|
421 |
+
# for start, end, scale in vae_skip_iter_schedule:
|
422 |
+
# if t <= start and t >= end:
|
423 |
+
# vae_skip_iter_t = bool(scale)
|
424 |
+
# break
|
425 |
+
# if vae_skip_iter_t:
|
426 |
+
# print(f"timestep:{t}, skip vae:{vae_skip_iter_t}")
|
427 |
+
|
428 |
+
# noise_pred = tranformer_forward(
|
429 |
+
# self.transformer,
|
430 |
+
# model_config=model_config,
|
431 |
+
# # Inputs of the condition (new feature)
|
432 |
+
# text_cond_mask=text_cond_mask,
|
433 |
+
# delta_emb=cur_delta_emb,
|
434 |
+
# delta_emb_pblock=cur_delta_emb_pblock,
|
435 |
+
# delta_emb_mask=cur_delta_emb_mask,
|
436 |
+
# delta_start_ends=delta_start_ends,
|
437 |
+
# condition_latents=None if vae_skip_iter_t else condition_latents,
|
438 |
+
# condition_ids=None if vae_skip_iter_t else condition_ids,
|
439 |
+
# condition_type_ids=None,
|
440 |
+
# # Inputs to the original transformer
|
441 |
+
# hidden_states=latents,
|
442 |
+
# # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
443 |
+
# timestep=timestep,
|
444 |
+
# guidance=guidance,
|
445 |
+
# pooled_projections=pooled_prompt_embeds,
|
446 |
+
# encoder_hidden_states=prompt_embeds,
|
447 |
+
# txt_ids=text_ids,
|
448 |
+
# img_ids=latent_image_ids,
|
449 |
+
# joint_attention_kwargs={'scale': lora_weight, "latent_sblora_weight": latent_sblora_weight, "condition_sblora_weight": condition_sblora_weight},
|
450 |
+
# store_attn_map=use_attention,
|
451 |
+
# last_attn_map=attn_map if cur_control_weight_lambda else None,
|
452 |
+
# use_text_mod=model_config["modulation"]["use_text_mod"],
|
453 |
+
# use_img_mod=model_config["modulation"]["use_img_mod"],
|
454 |
+
# mod_adapter=mod_adapter,
|
455 |
+
# latent_height=latent_height,
|
456 |
+
# return_dict=False,
|
457 |
+
# )[0]
|
458 |
+
|
459 |
+
# if use_attention:
|
460 |
+
# attn_maps, _ = gather_attn_maps(self.transformer, clear=True)
|
461 |
+
|
462 |
+
# # compute the previous noisy sample x_t -> x_t-1
|
463 |
+
# latents_dtype = latents.dtype
|
464 |
+
# latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
465 |
+
|
466 |
+
# if latents.dtype != latents_dtype:
|
467 |
+
# if torch.backends.mps.is_available():
|
468 |
+
# # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
469 |
+
# latents = latents.to(latents_dtype)
|
470 |
+
|
471 |
+
# if callback_on_step_end is not None:
|
472 |
+
# callback_kwargs = {}
|
473 |
+
# for k in callback_on_step_end_tensor_inputs:
|
474 |
+
# callback_kwargs[k] = locals()[k]
|
475 |
+
# callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
476 |
+
|
477 |
+
# latents = callback_outputs.pop("latents", latents)
|
478 |
+
# prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
479 |
+
|
480 |
+
# # call the callback, if provided
|
481 |
+
# if i == len(timesteps) - 1 or (
|
482 |
+
# (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
483 |
+
# ):
|
484 |
+
# progress_bar.update()
|
485 |
+
|
486 |
+
# if output_type == "latent":
|
487 |
+
# image = latents
|
488 |
+
|
489 |
+
# else:
|
490 |
+
# latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
491 |
+
# latents = (
|
492 |
+
# latents / self.vae.config.scaling_factor
|
493 |
+
# ) + self.vae.config.shift_factor
|
494 |
+
# image = self.vae.decode(latents, return_dict=False)[0]
|
495 |
+
# image = self.image_processor.postprocess(image, output_type=output_type)
|
496 |
+
|
497 |
+
# # Offload all models
|
498 |
+
# self.maybe_free_model_hooks()
|
499 |
+
|
500 |
+
# self.transformer.enable_lora()
|
501 |
+
|
502 |
+
# if vae_condition_scale != 1:
|
503 |
+
# for name, module in pipeline.transformer.named_modules():
|
504 |
+
# if not name.endswith(".attn"):
|
505 |
+
# continue
|
506 |
+
# del module.c_factor
|
507 |
+
|
508 |
+
# if not return_dict:
|
509 |
+
# return (image,)
|
510 |
+
|
511 |
+
# return FluxPipelineOutput(images=image)
|
512 |
+
|
513 |
+
|
514 |
+
# @torch.no_grad()
|
515 |
+
# def generate_from_test_sample(
|
516 |
+
# test_sample, pipe, config,
|
517 |
+
# num_images=1,
|
518 |
+
# vae_skip_iter: str = None,
|
519 |
+
# target_height: int = None,
|
520 |
+
# target_width: int = None,
|
521 |
+
# seed: int = 42,
|
522 |
+
# control_weight_lambda: str = None,
|
523 |
+
# double_attention: bool = False,
|
524 |
+
# single_attention: bool = False,
|
525 |
+
# ip_scale: str = None,
|
526 |
+
# use_latent_sblora_control: bool = False,
|
527 |
+
# latent_sblora_scale: str = None,
|
528 |
+
# use_condition_sblora_control: bool = False,
|
529 |
+
# condition_sblora_scale: str = None,
|
530 |
+
# use_idip = False,
|
531 |
+
# **kargs
|
532 |
+
# ):
|
533 |
+
# target_size = config["train"]["dataset"]["val_target_size"]
|
534 |
+
# condition_size = config["train"]["dataset"].get("val_condition_size", target_size//2)
|
535 |
+
# condition_pad_to = config["train"]["dataset"]["condition_pad_to"]
|
536 |
+
# pos_offset_type = config["model"].get("pos_offset_type", "width")
|
537 |
+
# seed = config["model"].get("seed", seed)
|
538 |
+
|
539 |
+
# device = pipe._execution_device
|
540 |
+
|
541 |
+
# condition_imgs = test_sample['input_images']
|
542 |
+
# position_delta = test_sample['position_delta']
|
543 |
+
# prompt = test_sample['prompt']
|
544 |
+
# original_image = test_sample.get('original_image', None)
|
545 |
+
# condition_type = test_sample.get('condition_type', "subject")
|
546 |
+
# modulation_input = test_sample.get('modulation', None)
|
547 |
+
|
548 |
+
# delta_start_ends = None
|
549 |
+
# condition_latents = condition_ids = None
|
550 |
+
# text_cond_mask = None
|
551 |
|
552 |
+
# delta_embs = None
|
553 |
+
# delta_embs_pblock = None
|
554 |
+
# delta_embs_mask = None
|
555 |
+
|
556 |
+
# try:
|
557 |
+
# max_length = config["model"]["modulation"]["max_text_len"]
|
558 |
+
# except Exception as e:
|
559 |
+
# print(e)
|
560 |
+
# max_length = 512
|
561 |
+
|
562 |
+
# if modulation_input is None or len(modulation_input) == 0:
|
563 |
+
# delta_emb = delta_emb_pblock = delta_emb_mask = None
|
564 |
+
# else:
|
565 |
+
# dtype = torch.bfloat16
|
566 |
+
# batch_size = 1
|
567 |
+
# N = config["model"]["modulation"].get("per_block_adapter_single_blocks", 0) + 19
|
568 |
+
# guidance = torch.tensor([3.5]).to(device).expand(batch_size)
|
569 |
+
# out_dim = config["model"]["modulation"]["out_dim"]
|
570 |
+
|
571 |
+
# tar_text_inputs = tokenize_t5_prompt(pipe, prompt, max_length)
|
572 |
+
# tar_padding_mask = tar_text_inputs.attention_mask.to(device).bool()
|
573 |
+
# tar_tokens = tar_text_inputs.input_ids.to(device)
|
574 |
+
# if config["model"]["modulation"]["eos_exclude"]:
|
575 |
+
# tar_padding_mask[tar_tokens == 1] = False
|
576 |
+
|
577 |
+
# def get_start_end_by_pompt_matching(src_prompts, tar_prompts):
|
578 |
+
# text_cond_mask = torch.zeros(batch_size, max_length, device=device, dtype=torch.bool)
|
579 |
+
# tar_prompt_input_ids = tokenize_t5_prompt(pipe, tar_prompts, max_length).input_ids
|
580 |
+
# src_prompt_count = 1
|
581 |
+
# start_ends = []
|
582 |
+
# for i, (src_prompt, tar_prompt, tar_prompt_tokens) in enumerate(zip(src_prompts, tar_prompts, tar_prompt_input_ids)):
|
583 |
+
# try:
|
584 |
+
# tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_prompt_tokens, src_prompt, src_prompt_count, max_length, verbose=False)
|
585 |
+
# start_ends.append([tar_start, tar_end])
|
586 |
+
# text_cond_mask[i, tar_start:tar_end] = True
|
587 |
+
# except Exception as e:
|
588 |
+
# print(e)
|
589 |
+
# return start_ends, text_cond_mask
|
590 |
+
|
591 |
+
# def encode_mod_image(pil_images):
|
592 |
+
# if config["model"]["modulation"]["use_dit"]:
|
593 |
+
# raise NotImplementedError()
|
594 |
+
# else:
|
595 |
+
# pil_images = [pad_to_square(img).resize((224, 224)) for img in pil_images]
|
596 |
+
# if config["model"]["modulation"]["use_vae"]:
|
597 |
+
# raise NotImplementedError()
|
598 |
+
# else:
|
599 |
+
# clip_pixel_values = pipe.clip_processor(
|
600 |
+
# text=None, images=pil_images, do_resize=False, do_center_crop=False, return_tensors="pt",
|
601 |
+
# ).pixel_values.to(dtype=dtype, device=device)
|
602 |
+
# clip_outputs = pipe.clip_model(clip_pixel_values, output_hidden_states=True, interpolate_pos_encoding=True, return_dict=True)
|
603 |
+
# return clip_outputs
|
604 |
+
|
605 |
+
# def rgba_to_white_background(input_path, background=(255,255,255)):
|
606 |
+
# with Image.open(input_path).convert("RGBA") as img:
|
607 |
+
# img_np = np.array(img)
|
608 |
+
# alpha = img_np[:, :, 3] / 255.0 # 归一化Alpha通道[3](@ref)
|
609 |
+
# rgb = img_np[:, :, :3].astype(float) # 提取RGB通道
|
610 |
|
611 |
+
# background_np = np.full_like(rgb, background, dtype=float) # 根据参数生成背景[7](@ref)
|
612 |
|
613 |
+
# # 混合计算:前景色*alpha + 背景色*(1-alpha)
|
614 |
+
# result_np = rgb * alpha[..., np.newaxis] + \
|
615 |
+
# background_np * (1 - alpha[..., np.newaxis])
|
616 |
|
617 |
+
# result = Image.fromarray(result_np.astype(np.uint8), "RGB")
|
618 |
+
# return result
|
619 |
+
# def get_mod_emb(modulation_input, timestep):
|
620 |
+
# delta_emb = torch.zeros((batch_size, max_length, out_dim), dtype=dtype, device=device)
|
621 |
+
# delta_emb_pblock = torch.zeros((batch_size, max_length, N, out_dim), dtype=dtype, device=device)
|
622 |
+
# delta_emb_mask = torch.zeros((batch_size, max_length), dtype=torch.bool, device=device)
|
623 |
+
# delta_start_ends = None
|
624 |
+
# condition_latents = condition_ids = None
|
625 |
+
# text_cond_mask = None
|
626 |
+
|
627 |
+
# if modulation_input[0]["type"] == "adapter":
|
628 |
+
# num_inputs = len(modulation_input[0]["src_inputs"])
|
629 |
+
# src_prompts = [x["caption"] for x in modulation_input[0]["src_inputs"]]
|
630 |
+
# src_text_inputs = tokenize_t5_prompt(pipe, src_prompts, max_length)
|
631 |
+
# src_input_ids = unpad_input_ids(src_text_inputs.input_ids, src_text_inputs.attention_mask)
|
632 |
+
# tar_input_ids = unpad_input_ids(tar_text_inputs.input_ids, tar_text_inputs.attention_mask)
|
633 |
+
# src_prompt_embeds = pipe._get_t5_prompt_embeds(prompt=src_prompts, max_sequence_length=max_length, device=device) # (M, 512, 4096)
|
634 |
|
635 |
+
# pil_images = [rgba_to_white_background(x["image_path"]) for x in modulation_input[0]["src_inputs"]]
|
636 |
+
|
637 |
+
# src_ds_scales = [x.get("downsample_scale", 1.0) for x in modulation_input[0]["src_inputs"]]
|
638 |
+
# resized_pil_images = []
|
639 |
+
# for img, ds_scale in zip(pil_images, src_ds_scales):
|
640 |
+
# img = pad_to_square(img)
|
641 |
+
# if ds_scale < 1.0:
|
642 |
+
# assert ds_scale > 0
|
643 |
+
# img = img.resize((int(224 * ds_scale), int(224 * ds_scale))).resize((224, 224))
|
644 |
+
# resized_pil_images.append(img)
|
645 |
+
# pil_images = resized_pil_images
|
646 |
|
647 |
+
# img_encoded = encode_mod_image(pil_images)
|
648 |
+
# delta_start_ends = []
|
649 |
+
# text_cond_mask = torch.zeros(num_inputs, max_length, device=device, dtype=torch.bool)
|
650 |
+
# if config["model"]["modulation"]["pass_vae"]:
|
651 |
+
# pil_images = [pad_to_square(img).resize((condition_size, condition_size)) for img in pil_images]
|
652 |
+
# with torch.no_grad():
|
653 |
+
# batch_tensor = torch.stack([pil2tensor(x) for x in pil_images])
|
654 |
+
# x_0, img_ids = encode_vae_images(pipe, batch_tensor) # (N, 256, 64)
|
655 |
+
|
656 |
+
# condition_latents = x_0.clone().detach().reshape(1, -1, 64) # (1, N256, 64)
|
657 |
+
# condition_ids = img_ids.clone().detach()
|
658 |
+
# condition_ids = condition_ids.unsqueeze(0).repeat_interleave(num_inputs, dim=0) # (N, 256, 3)
|
659 |
+
# for i in range(num_inputs):
|
660 |
+
# condition_ids[i, :, 1] += 0 if pos_offset_type == "width" else -(batch_tensor.shape[-1]//16) * (i + 1)
|
661 |
+
# condition_ids[i, :, 2] += -(batch_tensor.shape[-1]//16) * (i + 1)
|
662 |
+
# condition_ids = condition_ids.reshape(-1, 3) # (N256, 3)
|
663 |
+
|
664 |
+
# if config["model"]["modulation"]["use_dit"]:
|
665 |
+
# raise NotImplementedError()
|
666 |
+
# else:
|
667 |
+
# src_delta_embs = [] # [(512, 3072)]
|
668 |
+
# src_delta_emb_pblock = []
|
669 |
+
# for i in range(num_inputs):
|
670 |
+
# if isinstance(img_encoded, dict):
|
671 |
+
# _src_clip_outputs = {}
|
672 |
+
# for key in img_encoded:
|
673 |
+
# if torch.is_tensor(img_encoded[key]):
|
674 |
+
# _src_clip_outputs[key] = img_encoded[key][i:i+1]
|
675 |
+
# else:
|
676 |
+
# _src_clip_outputs[key] = [x[i:i+1] for x in img_encoded[key]]
|
677 |
+
# _img_encoded = _src_clip_outputs
|
678 |
+
# else:
|
679 |
+
# _img_encoded = img_encoded[i:i+1]
|
680 |
|
681 |
+
# x1, x2 = pipe.modulation_adapters[0](timestep, src_prompt_embeds[i:i+1], _img_encoded)
|
682 |
+
# src_delta_embs.append(x1[0]) # (512, 3072)
|
683 |
+
# src_delta_emb_pblock.append(x2[0]) # (512, N, 3072)
|
684 |
+
|
685 |
+
# for input_args in modulation_input[0]["use_words"]:
|
686 |
+
# src_word_count = 1
|
687 |
+
# if len(input_args) == 3:
|
688 |
+
# src_input_index, src_word, tar_word = input_args
|
689 |
+
# tar_word_count = 1
|
690 |
+
# else:
|
691 |
+
# src_input_index, src_word, tar_word, tar_word_count = input_args[:4]
|
692 |
+
# src_prompt = src_prompts[src_input_index]
|
693 |
+
# tar_prompt = prompt
|
694 |
+
|
695 |
+
# src_start, src_end = get_word_index(pipe, src_prompt, src_input_ids[src_input_index], src_word, src_word_count, max_length, verbose=False)
|
696 |
+
# tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_input_ids[0], tar_word, tar_word_count, max_length, verbose=False)
|
697 |
+
# if delta_emb is not None:
|
698 |
+
# delta_emb[:, tar_start:tar_end] = src_delta_embs[src_input_index][src_start:src_end] # (B, 512, 3072)
|
699 |
+
# if delta_emb_pblock is not None:
|
700 |
+
# delta_emb_pblock[:, tar_start:tar_end] = src_delta_emb_pblock[src_input_index][src_start:src_end] # (B, 512, N, 3072)
|
701 |
+
# delta_emb_mask[:, tar_start:tar_end] = True
|
702 |
+
# text_cond_mask[src_input_index, tar_start:tar_end] = True
|
703 |
+
# delta_start_ends.append([0, src_input_index, src_start, src_end, tar_start, tar_end])
|
704 |
+
# text_cond_mask = text_cond_mask.transpose(0, 1).unsqueeze(0)
|
705 |
+
|
706 |
+
# else:
|
707 |
+
# raise NotImplementedError()
|
708 |
+
# return delta_emb, delta_emb_pblock, delta_emb_mask, \
|
709 |
+
# text_cond_mask, delta_start_ends, condition_latents, condition_ids
|
710 |
|
711 |
+
# num_inference_steps = 28 # FIXME: harcoded here
|
712 |
+
# num_channels_latents = pipe.transformer.config.in_channels // 4
|
713 |
+
|
714 |
+
# # set timesteps
|
715 |
+
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
716 |
+
# mu = calculate_shift(
|
717 |
+
# num_channels_latents,
|
718 |
+
# pipe.scheduler.config.base_image_seq_len,
|
719 |
+
# pipe.scheduler.config.max_image_seq_len,
|
720 |
+
# pipe.scheduler.config.base_shift,
|
721 |
+
# pipe.scheduler.config.max_shift,
|
722 |
+
# )
|
723 |
+
# timesteps, num_inference_steps = retrieve_timesteps(
|
724 |
+
# pipe.scheduler,
|
725 |
+
# num_inference_steps,
|
726 |
+
# device,
|
727 |
+
# None,
|
728 |
+
# sigmas,
|
729 |
+
# mu=mu,
|
730 |
+
# )
|
731 |
+
|
732 |
+
# if modulation_input is not None:
|
733 |
+
# delta_embs = []
|
734 |
+
# delta_embs_pblock = []
|
735 |
+
# delta_embs_mask = []
|
736 |
+
# for i, t in enumerate(timesteps):
|
737 |
+
# t = t.expand(1).to(torch.bfloat16) / 1000
|
738 |
+
# (
|
739 |
+
# delta_emb, delta_emb_pblock, delta_emb_mask,
|
740 |
+
# text_cond_mask, delta_start_ends,
|
741 |
+
# condition_latents, condition_ids
|
742 |
+
# ) = get_mod_emb(modulation_input, t)
|
743 |
+
# delta_embs.append(delta_emb)
|
744 |
+
# delta_embs_pblock.append(delta_emb_pblock)
|
745 |
+
# delta_embs_mask.append(delta_emb_mask)
|
746 |
+
|
747 |
+
# if original_image is not None:
|
748 |
+
# raise NotImplementedError()
|
749 |
+
# (target_height, target_width), closest_ratio = get_closest_ratio(original_image.height, original_image.width, train_aspect_ratios)
|
750 |
+
# elif modulation_input is None or len(modulation_input) == 0:
|
751 |
+
# delta_emb = delta_emb_pblock = delta_emb_mask = None
|
752 |
+
# else:
|
753 |
+
# for i, t in enumerate(timesteps):
|
754 |
+
# t = t.expand(1).to(torch.bfloat16) / 1000
|
755 |
+
# (
|
756 |
+
# delta_emb, delta_emb_pblock, delta_emb_mask,
|
757 |
+
# text_cond_mask, delta_start_ends,
|
758 |
+
# condition_latents, condition_ids
|
759 |
+
# ) = get_mod_emb(modulation_input, t)
|
760 |
+
# delta_embs.append(delta_emb)
|
761 |
+
# delta_embs_pblock.append(delta_emb_pblock)
|
762 |
+
# delta_embs_mask.append(delta_emb_mask)
|
763 |
+
|
764 |
+
# if target_height is None or target_width is None:
|
765 |
+
# target_height = target_width = target_size
|
766 |
+
|
767 |
+
# if condition_pad_to == "square":
|
768 |
+
# condition_imgs = [pad_to_square(x) for x in condition_imgs]
|
769 |
+
# elif condition_pad_to == "target":
|
770 |
+
# condition_imgs = [pad_to_target(x, (target_size, target_size)) for x in condition_imgs]
|
771 |
+
# condition_imgs = [x.resize((condition_size, condition_size)).convert("RGB") for x in condition_imgs]
|
772 |
+
# # TODO: fix position_delta
|
773 |
+
# conditions = [
|
774 |
+
# Condition(
|
775 |
+
# condition_type=condition_type,
|
776 |
+
# condition=x,
|
777 |
+
# position_delta=position_delta,
|
778 |
+
# ) for x in condition_imgs
|
779 |
+
# ]
|
780 |
+
# # vlm_images = condition_imgs if config["model"]["use_vlm"] else []
|
781 |
+
|
782 |
+
# use_perblock_adapter = False
|
783 |
+
# try:
|
784 |
+
# if config["model"]["modulation"]["use_perblock_adapter"]:
|
785 |
+
# use_perblock_adapter = True
|
786 |
+
# except Exception as e:
|
787 |
+
# pass
|
788 |
+
|
789 |
+
# results = []
|
790 |
+
# for i in range(num_images):
|
791 |
+
# clear_attn_maps(pipe.transformer)
|
792 |
+
# generator = torch.Generator(device=device)
|
793 |
+
# generator.manual_seed(seed + i)
|
794 |
+
# if modulation_input is None or len(modulation_input) == 0:
|
795 |
+
# idips = None
|
796 |
+
# else:
|
797 |
+
# idips = ["human" in p["image_path"] for p in modulation_input[0]["src_inputs"]]
|
798 |
+
# if len(modulation_input[0]["use_words"][0])==5:
|
799 |
+
# print("use idips in use_words")
|
800 |
+
# idips = [x[-1] for x in modulation_input[0]["use_words"]]
|
801 |
+
# result_img = generate(
|
802 |
+
# pipe,
|
803 |
+
# prompt=prompt,
|
804 |
+
# max_sequence_length=max_length,
|
805 |
+
# vae_conditions=conditions,
|
806 |
+
# generator=generator,
|
807 |
+
# model_config=config["model"],
|
808 |
+
# height=target_height,
|
809 |
+
# width=target_width,
|
810 |
+
# condition_pad_to=condition_pad_to,
|
811 |
+
# condition_size=condition_size,
|
812 |
+
# text_cond_mask=text_cond_mask,
|
813 |
+
# delta_emb=delta_embs,
|
814 |
+
# delta_emb_pblock=delta_embs_pblock if use_perblock_adapter else None,
|
815 |
+
# delta_emb_mask=delta_embs_mask,
|
816 |
+
# delta_start_ends=delta_start_ends,
|
817 |
+
# condition_latents=condition_latents,
|
818 |
+
# condition_ids=condition_ids,
|
819 |
+
# mod_adapter=pipe.modulation_adapters[0] if config["model"]["modulation"]["use_dit"] else None,
|
820 |
+
# vae_skip_iter=vae_skip_iter,
|
821 |
+
# control_weight_lambda=control_weight_lambda,
|
822 |
+
# double_attention=double_attention,
|
823 |
+
# single_attention=single_attention,
|
824 |
+
# ip_scale=ip_scale,
|
825 |
+
# use_latent_sblora_control=use_latent_sblora_control,
|
826 |
+
# latent_sblora_scale=latent_sblora_scale,
|
827 |
+
# use_condition_sblora_control=use_condition_sblora_control,
|
828 |
+
# condition_sblora_scale=condition_sblora_scale,
|
829 |
+
# idips=idips if use_idip else None,
|
830 |
+
# **kargs,
|
831 |
+
# ).images[0]
|
832 |
+
|
833 |
+
# final_image = result_img
|
834 |
+
# results.append(final_image)
|
835 |
+
|
836 |
+
# if num_images == 1:
|
837 |
+
# return results[0]
|
838 |
+
# return results
|