Update app.py
Browse files
app.py
CHANGED
@@ -13,9 +13,6 @@
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
16 |
-
# STEP 1: Very first thing in the file: force spawn
|
17 |
-
import multiprocessing as mp
|
18 |
-
mp.set_start_method("spawn", force=True)
|
19 |
|
20 |
import spaces
|
21 |
|
@@ -119,7 +116,7 @@ detector = ObjectDetector(device)
|
|
119 |
config = get_train_config(config_path)
|
120 |
model.config = config
|
121 |
|
122 |
-
run_mode = "mod_only"
|
123 |
store_attn_map = False
|
124 |
run_name = time.strftime("%m%d-%H%M")
|
125 |
|
@@ -166,7 +163,6 @@ def crop_face_img(image):
|
|
166 |
if isinstance(image, str):
|
167 |
image = Image.open(image).convert("RGB")
|
168 |
|
169 |
-
# image = resize_keep_aspect_ratio(image, 1024)
|
170 |
image = pad_to_square(image).resize((2048, 2048))
|
171 |
|
172 |
face_bbox = face_model.detect(
|
@@ -194,7 +190,7 @@ def vlm_img_caption(image):
|
|
194 |
|
195 |
|
196 |
def generate_random_string(length=4):
|
197 |
-
letters = string.ascii_letters
|
198 |
result_str = ''.join(random.choice(letters) for i in range(length))
|
199 |
return result_str
|
200 |
|
@@ -209,31 +205,31 @@ def resize_keep_aspect_ratio(pil_image, target_size=1024):
|
|
209 |
|
210 |
@spaces.GPU()
|
211 |
def generate_image(
|
212 |
-
prompt,
|
213 |
cond_size, target_height, target_width,
|
214 |
seed,
|
215 |
vae_skip_iter, control_weight_lambda,
|
216 |
-
double_attention,
|
217 |
-
single_attention,
|
218 |
ip_scale,
|
219 |
latent_sblora_scale_str, vae_lora_scale,
|
220 |
-
|
221 |
-
|
|
|
222 |
):
|
223 |
torch.cuda.empty_cache()
|
224 |
num_images = 1
|
225 |
|
226 |
-
# Determine the number of images, captions, and faces based on the indexs length
|
227 |
images = list(images_captions_faces[:num_inputs])
|
228 |
captions = list(images_captions_faces[num_inputs:2 * num_inputs])
|
229 |
idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
|
230 |
-
images = [images[i] for i in
|
231 |
-
captions = [captions[i] for i in
|
232 |
-
idips_checkboxes = [idips_checkboxes[i] for i in
|
233 |
|
234 |
print(f"Length of images: {len(images)}")
|
235 |
print(f"Length of captions: {len(captions)}")
|
236 |
-
print(f"
|
237 |
|
238 |
print(f"Control weight lambda: {control_weight_lambda}")
|
239 |
if control_weight_lambda != "no":
|
@@ -243,7 +239,6 @@ def generate_image(
|
|
243 |
if ':' in part:
|
244 |
left, right = part.split(':')
|
245 |
values = right.split('/')
|
246 |
-
# 保存整体值
|
247 |
global_value = values[0]
|
248 |
id_value = values[1]
|
249 |
ip_value = values[2]
|
@@ -265,7 +260,7 @@ def generate_image(
|
|
265 |
use_words = []
|
266 |
cur_run_time = time.strftime("%m%d-%H%M%S")
|
267 |
tmp_dir_root = f"tmp/gradio_demo/{run_name}"
|
268 |
-
temp_dir = f"{tmp_dir_root}/{cur_run_time}_{generate_random_string(4)}"
|
269 |
os.makedirs(temp_dir, exist_ok=True)
|
270 |
print(f"Temporary directory created: {temp_dir}")
|
271 |
for i, (image_path, caption) in enumerate(zip(images, captions)):
|
@@ -279,7 +274,7 @@ def generate_image(
|
|
279 |
prompt = prompt.replace(f"ENT{i+1}", caption)
|
280 |
|
281 |
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
|
282 |
-
save_path = f"{temp_dir}/tmp_resized_input_{i}.png"
|
283 |
image.save(save_path)
|
284 |
|
285 |
input_image_path = save_path
|
@@ -317,7 +312,7 @@ def generate_image(
|
|
317 |
),
|
318 |
]
|
319 |
|
320 |
-
json_dump(test_sample, f"{temp_dir}/test_sample.json", 'utf-8')
|
321 |
assert single_attention == True
|
322 |
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
|
323 |
print(test_sample)
|
@@ -338,10 +333,10 @@ def generate_image(
|
|
338 |
target_width=target_width,
|
339 |
seed=seed,
|
340 |
store_attn_map=store_attn_map,
|
341 |
-
vae_skip_iter=vae_skip_iter,
|
342 |
-
control_weight_lambda=control_weight_lambda,
|
343 |
-
double_attention=double_attention,
|
344 |
-
single_attention=single_attention,
|
345 |
ip_scale=ip_scale,
|
346 |
use_latent_sblora_control=use_latent_sblora_control,
|
347 |
latent_sblora_scale=latent_sblora_scale_str,
|
@@ -353,12 +348,12 @@ def generate_image(
|
|
353 |
num_rows = int(math.ceil(num_images / num_cols))
|
354 |
image = image_grid(image, num_rows, num_cols)
|
355 |
|
356 |
-
save_path = f"{temp_dir}/tmp_result.png"
|
357 |
-
image.save(save_path)
|
358 |
|
359 |
return image
|
360 |
|
361 |
-
def create_image_input(index, open=True,
|
362 |
accordion_state = gr.State(open)
|
363 |
with gr.Column():
|
364 |
with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion:
|
@@ -366,18 +361,18 @@ def create_image_input(index, open=True, indexs_state=None):
|
|
366 |
caption = gr.Textbox(label=f"Caption {index + 1}", value="")
|
367 |
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
|
368 |
with gr.Row():
|
369 |
-
vlm_btn = gr.Button("
|
370 |
det_btn = gr.Button("Det & Seg")
|
371 |
face_btn = gr.Button("Crop Face")
|
372 |
accordion.expand(
|
373 |
-
inputs=[
|
374 |
fn = lambda x: update_inputs(True, index, x),
|
375 |
-
outputs=[
|
376 |
)
|
377 |
accordion.collapse(
|
378 |
-
inputs=[
|
379 |
fn = lambda x: update_inputs(False, index, x),
|
380 |
-
outputs=[
|
381 |
)
|
382 |
return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox
|
383 |
|
@@ -402,44 +397,95 @@ def merge_instances(orig_img, indices, ins_bboxes, ins_images):
|
|
402 |
|
403 |
def change_accordion(at: bool, index: int, state: list):
|
404 |
print(at, state)
|
405 |
-
|
406 |
if at:
|
407 |
-
if index not in
|
408 |
-
|
409 |
else:
|
410 |
-
if index in
|
411 |
-
|
412 |
|
413 |
-
# 确保
|
414 |
-
|
415 |
-
print(
|
416 |
-
return gr.Accordion(open=at),
|
417 |
|
418 |
def update_inputs(is_open, index, state: list):
|
419 |
-
|
420 |
if is_open:
|
421 |
-
if index not in
|
422 |
-
|
423 |
else:
|
424 |
-
if index in
|
425 |
-
|
426 |
|
427 |
-
|
428 |
-
|
429 |
-
|
430 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
431 |
|
432 |
if __name__ == "__main__":
|
433 |
|
434 |
with gr.Blocks() as demo:
|
435 |
-
|
436 |
-
|
|
|
437 |
|
438 |
gr.Markdown("### XVerse Demo")
|
439 |
with gr.Row():
|
440 |
with gr.Column():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
441 |
prompt = gr.Textbox(label="Prompt", value="")
|
442 |
-
|
|
|
443 |
|
444 |
with gr.Row():
|
445 |
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
|
@@ -520,24 +566,13 @@ if __name__ == "__main__":
|
|
520 |
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
|
521 |
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
|
522 |
|
523 |
-
clear_btn = gr.Button("
|
524 |
-
|
525 |
-
for i in range(num_inputs):
|
526 |
-
image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indexs_state=indexs_state)
|
527 |
-
images.append(image)
|
528 |
-
idip_checkboxes.append(id_ip_checkbox)
|
529 |
-
captions.append(caption)
|
530 |
-
face_btns.append(face_btn)
|
531 |
-
det_btns.append(det_btn)
|
532 |
-
vlm_btns.append(vlm_btn)
|
533 |
-
accordion_states.append(accordion_state)
|
534 |
-
|
535 |
-
accordions.append(accordion)
|
536 |
|
537 |
with gr.Column():
|
538 |
-
output = gr.Image(label="
|
539 |
seed = gr.Number(value=42, label="Seed", info="")
|
540 |
-
|
541 |
|
542 |
gen_btn.click(
|
543 |
generate_image,
|
@@ -546,25 +581,23 @@ if __name__ == "__main__":
|
|
546 |
vae_skip_iter, weight_id_ip_str,
|
547 |
double_attention, single_attention,
|
548 |
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
|
549 |
-
|
|
|
550 |
*images,
|
551 |
*captions,
|
552 |
*idip_checkboxes,
|
553 |
],
|
554 |
outputs=output
|
555 |
)
|
556 |
-
|
557 |
-
|
558 |
-
# 修改清空函数的输出参数
|
559 |
clear_btn.click(clear_images, outputs=images)
|
560 |
-
|
561 |
-
# 循环绑定 Det & Seg 和 Auto Caption 按钮的点击事件
|
562 |
for i in range(num_inputs):
|
563 |
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
|
564 |
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
|
565 |
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
|
566 |
-
accordion_states[i].change(fn=lambda x, state, index=i: change_accordion(x, index, state), inputs=[accordion_states[i],
|
567 |
-
|
|
|
568 |
|
569 |
demo.queue()
|
570 |
demo.launch()
|
|
|
13 |
# See the License for the specific language governing permissions and
|
14 |
# limitations under the License.
|
15 |
|
|
|
|
|
|
|
16 |
|
17 |
import spaces
|
18 |
|
|
|
116 |
config = get_train_config(config_path)
|
117 |
model.config = config
|
118 |
|
119 |
+
run_mode = "mod_only"
|
120 |
store_attn_map = False
|
121 |
run_name = time.strftime("%m%d-%H%M")
|
122 |
|
|
|
163 |
if isinstance(image, str):
|
164 |
image = Image.open(image).convert("RGB")
|
165 |
|
|
|
166 |
image = pad_to_square(image).resize((2048, 2048))
|
167 |
|
168 |
face_bbox = face_model.detect(
|
|
|
190 |
|
191 |
|
192 |
def generate_random_string(length=4):
|
193 |
+
letters = string.ascii_letters
|
194 |
result_str = ''.join(random.choice(letters) for i in range(length))
|
195 |
return result_str
|
196 |
|
|
|
205 |
|
206 |
@spaces.GPU()
|
207 |
def generate_image(
|
208 |
+
prompt,
|
209 |
cond_size, target_height, target_width,
|
210 |
seed,
|
211 |
vae_skip_iter, control_weight_lambda,
|
212 |
+
double_attention,
|
213 |
+
single_attention,
|
214 |
ip_scale,
|
215 |
latent_sblora_scale_str, vae_lora_scale,
|
216 |
+
indices,
|
217 |
+
session_id,
|
218 |
+
*images_captions_faces,
|
219 |
):
|
220 |
torch.cuda.empty_cache()
|
221 |
num_images = 1
|
222 |
|
|
|
223 |
images = list(images_captions_faces[:num_inputs])
|
224 |
captions = list(images_captions_faces[num_inputs:2 * num_inputs])
|
225 |
idips_checkboxes = list(images_captions_faces[2 * num_inputs:3 * num_inputs])
|
226 |
+
images = [images[i] for i in indices]
|
227 |
+
captions = [captions[i] for i in indices]
|
228 |
+
idips_checkboxes = [idips_checkboxes[i] for i in indices]
|
229 |
|
230 |
print(f"Length of images: {len(images)}")
|
231 |
print(f"Length of captions: {len(captions)}")
|
232 |
+
print(f"indices: {indices}")
|
233 |
|
234 |
print(f"Control weight lambda: {control_weight_lambda}")
|
235 |
if control_weight_lambda != "no":
|
|
|
239 |
if ':' in part:
|
240 |
left, right = part.split(':')
|
241 |
values = right.split('/')
|
|
|
242 |
global_value = values[0]
|
243 |
id_value = values[1]
|
244 |
ip_value = values[2]
|
|
|
260 |
use_words = []
|
261 |
cur_run_time = time.strftime("%m%d-%H%M%S")
|
262 |
tmp_dir_root = f"tmp/gradio_demo/{run_name}"
|
263 |
+
temp_dir = f"{tmp_dir_root}/{session_id}/{cur_run_time}_{generate_random_string(4)}"
|
264 |
os.makedirs(temp_dir, exist_ok=True)
|
265 |
print(f"Temporary directory created: {temp_dir}")
|
266 |
for i, (image_path, caption) in enumerate(zip(images, captions)):
|
|
|
274 |
prompt = prompt.replace(f"ENT{i+1}", caption)
|
275 |
|
276 |
image = resize_keep_aspect_ratio(Image.open(image_path), 768)
|
277 |
+
save_path = f"{temp_dir}/{session_id}/tmp_resized_input_{i}.png"
|
278 |
image.save(save_path)
|
279 |
|
280 |
input_image_path = save_path
|
|
|
312 |
),
|
313 |
]
|
314 |
|
315 |
+
json_dump(test_sample, f"{temp_dir}/{session_id}/test_sample.json", 'utf-8')
|
316 |
assert single_attention == True
|
317 |
target_size = int(round((target_width * target_height) ** 0.5) // 16 * 16)
|
318 |
print(test_sample)
|
|
|
333 |
target_width=target_width,
|
334 |
seed=seed,
|
335 |
store_attn_map=store_attn_map,
|
336 |
+
vae_skip_iter=vae_skip_iter,
|
337 |
+
control_weight_lambda=control_weight_lambda,
|
338 |
+
double_attention=double_attention,
|
339 |
+
single_attention=single_attention,
|
340 |
ip_scale=ip_scale,
|
341 |
use_latent_sblora_control=use_latent_sblora_control,
|
342 |
latent_sblora_scale=latent_sblora_scale_str,
|
|
|
348 |
num_rows = int(math.ceil(num_images / num_cols))
|
349 |
image = image_grid(image, num_rows, num_cols)
|
350 |
|
351 |
+
# save_path = f"{temp_dir}/tmp_result.png"
|
352 |
+
# image.save(save_path)
|
353 |
|
354 |
return image
|
355 |
|
356 |
+
def create_image_input(index, open=True, indices_state=None):
|
357 |
accordion_state = gr.State(open)
|
358 |
with gr.Column():
|
359 |
with gr.Accordion(f"Input Image {index + 1}", open=accordion_state.value) as accordion:
|
|
|
361 |
caption = gr.Textbox(label=f"Caption {index + 1}", value="")
|
362 |
id_ip_checkbox = gr.Checkbox(value=False, label=f"ID or not {index + 1}", visible=True)
|
363 |
with gr.Row():
|
364 |
+
vlm_btn = gr.Button("Generate Caption")
|
365 |
det_btn = gr.Button("Det & Seg")
|
366 |
face_btn = gr.Button("Crop Face")
|
367 |
accordion.expand(
|
368 |
+
inputs=[indices_state],
|
369 |
fn = lambda x: update_inputs(True, index, x),
|
370 |
+
outputs=[indices_state, accordion_state],
|
371 |
)
|
372 |
accordion.collapse(
|
373 |
+
inputs=[indices_state],
|
374 |
fn = lambda x: update_inputs(False, index, x),
|
375 |
+
outputs=[indices_state, accordion_state],
|
376 |
)
|
377 |
return image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox
|
378 |
|
|
|
397 |
|
398 |
def change_accordion(at: bool, index: int, state: list):
|
399 |
print(at, state)
|
400 |
+
indices = state
|
401 |
if at:
|
402 |
+
if index not in indices:
|
403 |
+
indices.append(index)
|
404 |
else:
|
405 |
+
if index in indices:
|
406 |
+
indices.remove(index)
|
407 |
|
408 |
+
# 确保 indices 是有序的
|
409 |
+
indices.sort()
|
410 |
+
print(indices)
|
411 |
+
return gr.Accordion(open=at), indices
|
412 |
|
413 |
def update_inputs(is_open, index, state: list):
|
414 |
+
indices = state
|
415 |
if is_open:
|
416 |
+
if index not in indices:
|
417 |
+
indices.append(index)
|
418 |
else:
|
419 |
+
if index in indices:
|
420 |
+
indices.remove(index)
|
421 |
|
422 |
+
indices.sort()
|
423 |
+
print(indices)
|
424 |
+
return indices, is_open
|
425 |
+
|
426 |
+
def start_session(request: gr.Request):
|
427 |
+
"""
|
428 |
+
Initialize a new user session and return the session identifier.
|
429 |
+
|
430 |
+
This function is triggered when the Gradio demo loads and creates a unique
|
431 |
+
session hash that will be used to organize outputs and temporary files
|
432 |
+
for this specific user session.
|
433 |
+
|
434 |
+
Args:
|
435 |
+
request (gr.Request): Gradio request object containing session information
|
436 |
+
|
437 |
+
Returns:
|
438 |
+
str: Unique session hash identifier
|
439 |
+
"""
|
440 |
+
return request.session_hash
|
441 |
+
|
442 |
+
|
443 |
+
# Cleanup on unload
|
444 |
+
def cleanup(request: gr.Request):
|
445 |
+
"""
|
446 |
+
Clean up session-specific directories and temporary files when the user session ends.
|
447 |
+
|
448 |
+
This function is triggered when the Gradio demo is unloaded (e.g., when the user
|
449 |
+
closes the browser tab or navigates away). It removes all temporary files and
|
450 |
+
directories created during the user's session to free up storage space.
|
451 |
+
|
452 |
+
Args:
|
453 |
+
request (gr.Request): Gradio request object containing session information
|
454 |
+
"""
|
455 |
+
sid = request.session_hash
|
456 |
+
if sid:
|
457 |
+
d1 = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], sid)
|
458 |
+
d2 = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], sid)
|
459 |
+
shutil.rmtree(d1, ignore_errors=True)
|
460 |
+
shutil.rmtree(d2, ignore_errors=True)
|
461 |
+
|
462 |
|
463 |
if __name__ == "__main__":
|
464 |
|
465 |
with gr.Blocks() as demo:
|
466 |
+
session_state = gr.State()
|
467 |
+
demo.load(start_session, outputs=[session_state])
|
468 |
+
indices_state = gr.State([0, 1])
|
469 |
|
470 |
gr.Markdown("### XVerse Demo")
|
471 |
with gr.Row():
|
472 |
with gr.Column():
|
473 |
+
with gr.Row():
|
474 |
+
for i in range(num_inputs):
|
475 |
+
image, caption, face_btn, det_btn, vlm_btn, accordion_state, accordion, id_ip_checkbox = create_image_input(i, open=i<2, indices_state=indices_state)
|
476 |
+
images.append(image)
|
477 |
+
idip_checkboxes.append(id_ip_checkbox)
|
478 |
+
captions.append(caption)
|
479 |
+
face_btns.append(face_btn)
|
480 |
+
det_btns.append(det_btn)
|
481 |
+
vlm_btns.append(vlm_btn)
|
482 |
+
accordion_states.append(accordion_state)
|
483 |
+
|
484 |
+
accordions.append(accordion)
|
485 |
+
|
486 |
prompt = gr.Textbox(label="Prompt", value="")
|
487 |
+
gen_btn = gr.Button("Generate", variant="primary")
|
488 |
+
with gr.Accordion("Advanced Settings", open=False):
|
489 |
|
490 |
with gr.Row():
|
491 |
target_height = gr.Slider(512, 1024, step=128, value=768, label="Generated Height", info="")
|
|
|
566 |
double_attention = gr.Checkbox(value=False, label="Double Attention", visible=False)
|
567 |
single_attention = gr.Checkbox(value=True, label="Single Attention", visible=False)
|
568 |
|
569 |
+
clear_btn = gr.Button("Clear Images")
|
570 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
571 |
|
572 |
with gr.Column():
|
573 |
+
output = gr.Image(label="Result")
|
574 |
seed = gr.Number(value=42, label="Seed", info="")
|
575 |
+
|
576 |
|
577 |
gen_btn.click(
|
578 |
generate_image,
|
|
|
581 |
vae_skip_iter, weight_id_ip_str,
|
582 |
double_attention, single_attention,
|
583 |
db_latent_lora_scale_str, sb_latent_lora_scale_str, vae_lora_scale_str,
|
584 |
+
indices_state,
|
585 |
+
session_state,
|
586 |
*images,
|
587 |
*captions,
|
588 |
*idip_checkboxes,
|
589 |
],
|
590 |
outputs=output
|
591 |
)
|
|
|
|
|
|
|
592 |
clear_btn.click(clear_images, outputs=images)
|
593 |
+
|
|
|
594 |
for i in range(num_inputs):
|
595 |
face_btns[i].click(crop_face_img, inputs=[images[i]], outputs=[images[i]])
|
596 |
det_btns[i].click(det_seg_img, inputs=[images[i], captions[i]], outputs=[images[i]])
|
597 |
vlm_btns[i].click(vlm_img_caption, inputs=[images[i]], outputs=[captions[i]])
|
598 |
+
accordion_states[i].change(fn=lambda x, state, index=i: change_accordion(x, index, state), inputs=[accordion_states[i], indices_state], outputs=[accordions[i], indices_state])
|
599 |
+
|
600 |
+
demo.unload(cleanup)
|
601 |
|
602 |
demo.queue()
|
603 |
demo.launch()
|