Delete src
Browse files- src/adapters/__init__.py +0 -0
- src/adapters/mod_adapters.py +0 -243
- src/environmentdata.py +0 -55
- src/flux/block.py +0 -814
- src/flux/condition.py +0 -133
- src/flux/generate.py +0 -838
- src/flux/lora_controller.py +0 -99
- src/flux/pipeline_tools.py +0 -685
- src/flux/transformer.py +0 -363
- src/utils/data_utils.py +0 -404
- src/utils/modulation_utils.py +0 -55
src/adapters/__init__.py
DELETED
File without changes
|
src/adapters/mod_adapters.py
DELETED
@@ -1,243 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
from typing import Dict, List, Optional, Set, Tuple, Union
|
17 |
-
from dataclasses import dataclass
|
18 |
-
from inspect import isfunction
|
19 |
-
|
20 |
-
import os
|
21 |
-
import torch
|
22 |
-
import torch.nn as nn
|
23 |
-
import torch.nn.functional as F
|
24 |
-
from einops import rearrange, repeat
|
25 |
-
|
26 |
-
from diffusers.models.modeling_utils import ModelMixin
|
27 |
-
from diffusers.configuration_utils import ConfigMixin, register_to_config
|
28 |
-
from diffusers.models.embeddings import TimestepEmbedding, Timesteps
|
29 |
-
|
30 |
-
from src.utils.data_utils import pad_to_square, pad_to_target
|
31 |
-
|
32 |
-
from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPVisionModel
|
33 |
-
|
34 |
-
from collections import OrderedDict
|
35 |
-
|
36 |
-
class SquaredReLU(nn.Module):
|
37 |
-
def forward(self, x: torch.Tensor):
|
38 |
-
return torch.square(torch.relu(x))
|
39 |
-
|
40 |
-
class AdaLayerNorm(nn.Module):
|
41 |
-
def __init__(self, embedding_dim: int, time_embedding_dim: Optional[int] = None, ln_bias=True):
|
42 |
-
super().__init__()
|
43 |
-
|
44 |
-
if time_embedding_dim is None:
|
45 |
-
time_embedding_dim = embedding_dim
|
46 |
-
|
47 |
-
self.silu = nn.SiLU()
|
48 |
-
self.linear = nn.Linear(time_embedding_dim, 2 * embedding_dim, bias=True)
|
49 |
-
nn.init.zeros_(self.linear.weight)
|
50 |
-
nn.init.zeros_(self.linear.bias)
|
51 |
-
|
52 |
-
self.norm = nn.LayerNorm(embedding_dim, elementwise_affine=False, eps=1e-6, bias=ln_bias)
|
53 |
-
|
54 |
-
def forward(
|
55 |
-
self, x: torch.Tensor, timestep_embedding: torch.Tensor
|
56 |
-
) -> tuple[torch.Tensor, torch.Tensor]:
|
57 |
-
emb = self.linear(self.silu(timestep_embedding))
|
58 |
-
shift, scale = emb.view(len(x), 1, -1).chunk(2, dim=-1)
|
59 |
-
x = self.norm(x) * (1 + scale) + shift
|
60 |
-
return x
|
61 |
-
|
62 |
-
class PerceiverAttentionBlock(nn.Module):
|
63 |
-
def __init__(
|
64 |
-
self, d_model: int, n_heads: int,
|
65 |
-
time_embedding_dim: Optional[int] = None,
|
66 |
-
double_kv: Optional[bool] = True,
|
67 |
-
):
|
68 |
-
super().__init__()
|
69 |
-
self.attn = nn.MultiheadAttention(d_model, n_heads, batch_first=True)
|
70 |
-
self.n_heads = n_heads
|
71 |
-
|
72 |
-
self.mlp = nn.Sequential(
|
73 |
-
OrderedDict(
|
74 |
-
[
|
75 |
-
("c_fc", nn.Linear(d_model, d_model * 4)),
|
76 |
-
("sq_relu", SquaredReLU()),
|
77 |
-
("c_proj", nn.Linear(d_model * 4, d_model)),
|
78 |
-
]
|
79 |
-
)
|
80 |
-
)
|
81 |
-
self.double_kv = double_kv
|
82 |
-
self.ln_1 = AdaLayerNorm(d_model, time_embedding_dim)
|
83 |
-
self.ln_2 = AdaLayerNorm(d_model, time_embedding_dim)
|
84 |
-
self.ln_ff = AdaLayerNorm(d_model, time_embedding_dim)
|
85 |
-
|
86 |
-
def attention(self, q: torch.Tensor, kv: torch.Tensor, attn_mask: torch.Tensor = None):
|
87 |
-
attn_output, attn_output_weights = self.attn(q, kv, kv, need_weights=False, key_padding_mask=attn_mask)
|
88 |
-
return attn_output
|
89 |
-
|
90 |
-
def forward(
|
91 |
-
self,
|
92 |
-
x: torch.Tensor,
|
93 |
-
latents: torch.Tensor,
|
94 |
-
timestep_embedding: torch.Tensor = None,
|
95 |
-
attn_mask: torch.Tensor = None
|
96 |
-
):
|
97 |
-
normed_latents = self.ln_1(latents, timestep_embedding)
|
98 |
-
normed_x = self.ln_2(x, timestep_embedding)
|
99 |
-
if self.double_kv:
|
100 |
-
kv = torch.cat([normed_latents, normed_x], dim=1)
|
101 |
-
else:
|
102 |
-
kv = normed_x
|
103 |
-
attn = self.attention(
|
104 |
-
q=normed_latents,
|
105 |
-
kv=kv,
|
106 |
-
attn_mask=attn_mask,
|
107 |
-
)
|
108 |
-
if attn_mask is not None:
|
109 |
-
query_padding_mask = attn_mask.chunk(2, -1)[0].unsqueeze(-1) # (B, 2S) -> (B, S, 1)
|
110 |
-
latents = latents + attn * (~query_padding_mask).to(attn)
|
111 |
-
else:
|
112 |
-
latents = latents + attn
|
113 |
-
latents = latents + self.mlp(self.ln_ff(latents, timestep_embedding))
|
114 |
-
return latents
|
115 |
-
|
116 |
-
|
117 |
-
class CLIPModAdapter(ModelMixin, ConfigMixin):
|
118 |
-
@register_to_config
|
119 |
-
def __init__(
|
120 |
-
self,
|
121 |
-
out_dim=3072,
|
122 |
-
width=1024,
|
123 |
-
pblock_width=512,
|
124 |
-
layers=6,
|
125 |
-
pblock_layers=1,
|
126 |
-
heads=8,
|
127 |
-
input_text_dim=4096,
|
128 |
-
input_image_dim=1024,
|
129 |
-
pblock_single_blocks=0,
|
130 |
-
):
|
131 |
-
super().__init__()
|
132 |
-
self.out_dim = out_dim
|
133 |
-
|
134 |
-
self.net = TextImageResampler(
|
135 |
-
width=width,
|
136 |
-
layers=layers,
|
137 |
-
heads=heads,
|
138 |
-
input_text_dim=input_text_dim,
|
139 |
-
input_image_dim=input_image_dim,
|
140 |
-
time_embedding_dim=64,
|
141 |
-
output_dim=out_dim,
|
142 |
-
)
|
143 |
-
self.net2 = TextImageResampler(
|
144 |
-
width=pblock_width,
|
145 |
-
layers=pblock_layers,
|
146 |
-
heads=heads,
|
147 |
-
input_text_dim=input_text_dim,
|
148 |
-
input_image_dim=input_image_dim,
|
149 |
-
time_embedding_dim=64,
|
150 |
-
output_dim=out_dim*(19+pblock_single_blocks),
|
151 |
-
)
|
152 |
-
|
153 |
-
def enable_gradient_checkpointing(self):
|
154 |
-
self.gradient_checkpointing = True
|
155 |
-
self.net.enable_gradient_checkpointing()
|
156 |
-
self.net2.enable_gradient_checkpointing()
|
157 |
-
|
158 |
-
|
159 |
-
def forward(self, t_emb, llm_hidden_states, clip_outputs):
|
160 |
-
if len(llm_hidden_states.shape) > 3:
|
161 |
-
llm_hidden_states = llm_hidden_states[..., -1, :]
|
162 |
-
batch_size, seq_length = llm_hidden_states.shape[:2]
|
163 |
-
|
164 |
-
img_cls_feat = clip_outputs["image_embeds"] # (B, 768)
|
165 |
-
img_last_feat = clip_outputs["last_hidden_state"] # (B, 257, 1024)
|
166 |
-
img_layer_feats = clip_outputs["hidden_states"] # [(B, 257, 1024) * 25]
|
167 |
-
img_second_last_feat = img_layer_feats[-2] # (B, 257, 1024)
|
168 |
-
|
169 |
-
img_hidden_states = img_second_last_feat # (B, 257, 1024)
|
170 |
-
|
171 |
-
x = self.net(llm_hidden_states, img_hidden_states) # (B, S, 3072)
|
172 |
-
x2 = self.net2(llm_hidden_states, img_hidden_states).view(batch_size, seq_length, -1, self.out_dim) # (B, S, N, 3072)
|
173 |
-
return x, x2
|
174 |
-
|
175 |
-
|
176 |
-
class TextImageResampler(nn.Module):
|
177 |
-
def __init__(
|
178 |
-
self,
|
179 |
-
width: int = 768,
|
180 |
-
layers: int = 6,
|
181 |
-
heads: int = 8,
|
182 |
-
output_dim: int = 3072,
|
183 |
-
input_text_dim: int = 4096,
|
184 |
-
input_image_dim: int = 1024,
|
185 |
-
time_embedding_dim: int = 64,
|
186 |
-
):
|
187 |
-
super().__init__()
|
188 |
-
self.output_dim = output_dim
|
189 |
-
self.input_text_dim = input_text_dim
|
190 |
-
self.input_image_dim = input_image_dim
|
191 |
-
self.time_embedding_dim = time_embedding_dim
|
192 |
-
|
193 |
-
self.text_proj_in = nn.Linear(input_text_dim, width)
|
194 |
-
self.image_proj_in = nn.Linear(input_image_dim, width)
|
195 |
-
|
196 |
-
self.perceiver_blocks = nn.Sequential(
|
197 |
-
*[
|
198 |
-
PerceiverAttentionBlock(
|
199 |
-
width, heads, time_embedding_dim=self.time_embedding_dim
|
200 |
-
)
|
201 |
-
for _ in range(layers)
|
202 |
-
]
|
203 |
-
)
|
204 |
-
|
205 |
-
self.proj_out = nn.Sequential(
|
206 |
-
nn.Linear(width, output_dim), nn.LayerNorm(output_dim)
|
207 |
-
)
|
208 |
-
|
209 |
-
self.gradient_checkpointing = False
|
210 |
-
|
211 |
-
def enable_gradient_checkpointing(self):
|
212 |
-
self.gradient_checkpointing = True
|
213 |
-
|
214 |
-
|
215 |
-
def forward(
|
216 |
-
self,
|
217 |
-
text_hidden_states: torch.Tensor,
|
218 |
-
image_hidden_states: torch.Tensor,
|
219 |
-
):
|
220 |
-
timestep_embedding = torch.zeros((text_hidden_states.shape[0], 1, self.time_embedding_dim)).to(text_hidden_states)
|
221 |
-
|
222 |
-
text_hidden_states = self.text_proj_in(text_hidden_states)
|
223 |
-
image_hidden_states = self.image_proj_in(image_hidden_states)
|
224 |
-
|
225 |
-
for p_block in self.perceiver_blocks:
|
226 |
-
if self.gradient_checkpointing:
|
227 |
-
def create_custom_forward(module):
|
228 |
-
def custom_forward(*inputs):
|
229 |
-
return module(*inputs)
|
230 |
-
return custom_forward
|
231 |
-
|
232 |
-
text_hidden_states = torch.utils.checkpoint.checkpoint(
|
233 |
-
create_custom_forward(p_block),
|
234 |
-
image_hidden_states,
|
235 |
-
text_hidden_states,
|
236 |
-
timestep_embedding
|
237 |
-
)
|
238 |
-
else:
|
239 |
-
text_hidden_states = p_block(image_hidden_states, text_hidden_states, timestep_embedding=timestep_embedding)
|
240 |
-
|
241 |
-
text_hidden_states = self.proj_out(text_hidden_states)
|
242 |
-
|
243 |
-
return text_hidden_states
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/environmentdata.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
|
2 |
-
from huggingface_hub import snapshot_download
|
3 |
-
import os
|
4 |
-
|
5 |
-
# FLUX.1-dev
|
6 |
-
snapshot_download(
|
7 |
-
repo_id="black-forest-labs/FLUX.1-dev",
|
8 |
-
local_dir="./FLUX.1-dev",
|
9 |
-
local_dir_use_symlinks=False
|
10 |
-
)
|
11 |
-
|
12 |
-
# Florence-2-large
|
13 |
-
snapshot_download(
|
14 |
-
repo_id="microsoft/Florence-2-large",
|
15 |
-
local_dir="./Florence-2-large",
|
16 |
-
local_dir_use_symlinks=False
|
17 |
-
)
|
18 |
-
|
19 |
-
# CLIP ViT Large
|
20 |
-
snapshot_download(
|
21 |
-
repo_id="openai/clip-vit-large-patch14",
|
22 |
-
local_dir="./clip-vit-large-patch14",
|
23 |
-
local_dir_use_symlinks=False
|
24 |
-
)
|
25 |
-
|
26 |
-
# DINO ViT-s16
|
27 |
-
snapshot_download(
|
28 |
-
repo_id="facebook/dino-vits16",
|
29 |
-
local_dir="./dino-vits16",
|
30 |
-
local_dir_use_symlinks=False
|
31 |
-
)
|
32 |
-
|
33 |
-
# mPLUG Visual Question Answering
|
34 |
-
snapshot_download(
|
35 |
-
repo_id="xingjianleng/mplug_visual-question-answering_coco_large_en",
|
36 |
-
local_dir="./mplug_visual-question-answering_coco_large_en",
|
37 |
-
local_dir_use_symlinks=False
|
38 |
-
)
|
39 |
-
|
40 |
-
# XVerse
|
41 |
-
snapshot_download(
|
42 |
-
repo_id="ByteDance/XVerse",
|
43 |
-
local_dir="./XVerse",
|
44 |
-
local_dir_use_symlinks=False
|
45 |
-
)
|
46 |
-
|
47 |
-
|
48 |
-
os.environ["FLORENCE2_MODEL_PATH"] = "./checkpoints/Florence-2-large"
|
49 |
-
os.environ["SAM2_MODEL_PATH"] = "./checkpoints/sam2.1_hiera_large.pt"
|
50 |
-
os.environ["FACE_ID_MODEL_PATH"] = "./checkpoints/model_ir_se50.pth"
|
51 |
-
os.environ["CLIP_MODEL_PATH"] = "./checkpoints/clip-vit-large-patch14"
|
52 |
-
os.environ["FLUX_MODEL_PATH"] = "./checkpoints/FLUX.1-dev"
|
53 |
-
os.environ["DPG_VQA_MODEL_PATH"] = "./checkpoints/mplug_visual-question-answering_coco_large_en"
|
54 |
-
os.environ["DINO_MODEL_PATH"] = "./checkpoints/dino-vits16"
|
55 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/block.py
DELETED
@@ -1,814 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import torch
|
17 |
-
from typing import List, Union, Optional, Tuple, Dict, Any, Callable
|
18 |
-
from diffusers.models.attention_processor import Attention, F
|
19 |
-
from .lora_controller import enable_lora
|
20 |
-
from einops import rearrange
|
21 |
-
import math
|
22 |
-
from diffusers.models.embeddings import apply_rotary_emb
|
23 |
-
|
24 |
-
|
25 |
-
def scaled_dot_product_attention(query, key, value, attn_mask=None, dropout_p=0.0, is_causal=False, scale=None) -> torch.Tensor:
|
26 |
-
# Efficient implementation equivalent to the following:
|
27 |
-
L, S = query.size(-2), key.size(-2)
|
28 |
-
B = query.size(0)
|
29 |
-
scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
|
30 |
-
attn_bias = torch.zeros(B, 1, L, S, dtype=query.dtype, device=query.device)
|
31 |
-
if is_causal:
|
32 |
-
assert attn_mask is None
|
33 |
-
assert False
|
34 |
-
temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
|
35 |
-
attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
|
36 |
-
attn_bias.to(query.dtype)
|
37 |
-
|
38 |
-
if attn_mask is not None:
|
39 |
-
if attn_mask.dtype == torch.bool:
|
40 |
-
attn_bias.masked_fill_(attn_mask.logical_not(), float("-inf"))
|
41 |
-
else:
|
42 |
-
attn_bias += attn_mask
|
43 |
-
attn_weight = query @ key.transpose(-2, -1) * scale_factor
|
44 |
-
attn_weight += attn_bias.to(attn_weight.device)
|
45 |
-
attn_weight = torch.softmax(attn_weight, dim=-1)
|
46 |
-
|
47 |
-
return torch.dropout(attn_weight, dropout_p, train=True) @ value, attn_weight
|
48 |
-
|
49 |
-
def attn_forward(
|
50 |
-
attn: Attention,
|
51 |
-
hidden_states: torch.FloatTensor,
|
52 |
-
encoder_hidden_states: torch.FloatTensor = None,
|
53 |
-
condition_latents: torch.FloatTensor = None,
|
54 |
-
text_cond_mask: Optional[torch.FloatTensor] = None,
|
55 |
-
attention_mask: Optional[torch.FloatTensor] = None,
|
56 |
-
image_rotary_emb: Optional[torch.Tensor] = None,
|
57 |
-
cond_rotary_emb: Optional[torch.Tensor] = None,
|
58 |
-
model_config: Optional[Dict[str, Any]] = {},
|
59 |
-
store_attn_map: bool = False,
|
60 |
-
latent_height: Optional[int] = None,
|
61 |
-
timestep: Optional[torch.Tensor] = None,
|
62 |
-
last_attn_map: Optional[torch.Tensor] = None,
|
63 |
-
condition_sblora_weight: Optional[float] = None,
|
64 |
-
latent_sblora_weight: Optional[float] = None,
|
65 |
-
) -> torch.FloatTensor:
|
66 |
-
batch_size, _, _ = (
|
67 |
-
hidden_states.shape
|
68 |
-
if encoder_hidden_states is None
|
69 |
-
else encoder_hidden_states.shape
|
70 |
-
)
|
71 |
-
|
72 |
-
is_sblock = encoder_hidden_states is None
|
73 |
-
is_dblock = not is_sblock
|
74 |
-
|
75 |
-
with enable_lora(
|
76 |
-
(attn.to_q, attn.to_k, attn.to_v),
|
77 |
-
(is_dblock and model_config["latent_lora"]) or (is_sblock and model_config["sblock_lora"]), latent_sblora_weight=latent_sblora_weight
|
78 |
-
):
|
79 |
-
query = attn.to_q(hidden_states)
|
80 |
-
key = attn.to_k(hidden_states)
|
81 |
-
value = attn.to_v(hidden_states)
|
82 |
-
|
83 |
-
inner_dim = key.shape[-1]
|
84 |
-
head_dim = inner_dim // attn.heads
|
85 |
-
|
86 |
-
query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
87 |
-
key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
88 |
-
value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
89 |
-
|
90 |
-
if attn.norm_q is not None:
|
91 |
-
query = attn.norm_q(query)
|
92 |
-
if attn.norm_k is not None:
|
93 |
-
key = attn.norm_k(key)
|
94 |
-
|
95 |
-
# the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states`
|
96 |
-
if encoder_hidden_states is not None:
|
97 |
-
# `context` projections.
|
98 |
-
with enable_lora((attn.add_q_proj, attn.add_k_proj, attn.add_v_proj), model_config["text_lora"]):
|
99 |
-
encoder_hidden_states_query_proj = attn.add_q_proj(encoder_hidden_states)
|
100 |
-
encoder_hidden_states_key_proj = attn.add_k_proj(encoder_hidden_states)
|
101 |
-
encoder_hidden_states_value_proj = attn.add_v_proj(encoder_hidden_states)
|
102 |
-
|
103 |
-
encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
104 |
-
encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
105 |
-
encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
106 |
-
|
107 |
-
if attn.norm_added_q is not None:
|
108 |
-
encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj)
|
109 |
-
if attn.norm_added_k is not None:
|
110 |
-
encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj)
|
111 |
-
|
112 |
-
# attention
|
113 |
-
query = torch.cat([encoder_hidden_states_query_proj, query], dim=2)
|
114 |
-
key = torch.cat([encoder_hidden_states_key_proj, key], dim=2)
|
115 |
-
value = torch.cat([encoder_hidden_states_value_proj, value], dim=2)
|
116 |
-
|
117 |
-
if image_rotary_emb is not None:
|
118 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
119 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
120 |
-
|
121 |
-
if condition_latents is not None:
|
122 |
-
assert condition_latents.shape[0] == batch_size
|
123 |
-
cond_length = condition_latents.shape[1]
|
124 |
-
|
125 |
-
cond_lora_activate = (is_dblock and model_config["use_condition_dblock_lora"]) or (is_sblock and model_config["use_condition_sblock_lora"])
|
126 |
-
with enable_lora(
|
127 |
-
(attn.to_q, attn.to_k, attn.to_v),
|
128 |
-
dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight #TODO implementation for condition lora not share
|
129 |
-
):
|
130 |
-
cond_query = attn.to_q(condition_latents)
|
131 |
-
cond_key = attn.to_k(condition_latents)
|
132 |
-
cond_value = attn.to_v(condition_latents)
|
133 |
-
|
134 |
-
cond_query = cond_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
135 |
-
cond_key = cond_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
136 |
-
cond_value = cond_value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
|
137 |
-
if attn.norm_q is not None:
|
138 |
-
cond_query = attn.norm_q(cond_query)
|
139 |
-
if attn.norm_k is not None:
|
140 |
-
cond_key = attn.norm_k(cond_key)
|
141 |
-
|
142 |
-
if cond_rotary_emb is not None:
|
143 |
-
cond_query = apply_rotary_emb(cond_query, cond_rotary_emb)
|
144 |
-
cond_key = apply_rotary_emb(cond_key, cond_rotary_emb)
|
145 |
-
|
146 |
-
if model_config.get("text_cond_attn", False):
|
147 |
-
if encoder_hidden_states is not None:
|
148 |
-
assert text_cond_mask is not None
|
149 |
-
img_length = hidden_states.shape[1]
|
150 |
-
seq_length = encoder_hidden_states_query_proj.shape[2]
|
151 |
-
assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
|
152 |
-
if len(text_cond_mask.shape) == 2:
|
153 |
-
text_cond_mask = text_cond_mask.unsqueeze(-1)
|
154 |
-
N = text_cond_mask.shape[-1] # num_condition
|
155 |
-
else:
|
156 |
-
raise NotImplementedError()
|
157 |
-
|
158 |
-
query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
|
159 |
-
key = torch.cat([key, cond_key], dim=2)
|
160 |
-
value = torch.cat([value, cond_value], dim=2)
|
161 |
-
|
162 |
-
assert query.shape[2] == key.shape[2]
|
163 |
-
assert query.shape[2] == cond_length + img_length + seq_length
|
164 |
-
|
165 |
-
attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
|
166 |
-
attention_mask[..., -cond_length:, :-cond_length] = False
|
167 |
-
attention_mask[..., :-cond_length, -cond_length:] = False
|
168 |
-
|
169 |
-
if encoder_hidden_states is not None:
|
170 |
-
tokens_per_cond = cond_length // N
|
171 |
-
for i in range(batch_size):
|
172 |
-
for j in range(N):
|
173 |
-
start = seq_length + img_length + tokens_per_cond * j
|
174 |
-
attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = text_cond_mask[i, :, j].unsqueeze(-1)
|
175 |
-
|
176 |
-
elif model_config.get("union_cond_attn", False):
|
177 |
-
query = torch.cat([query, cond_query], dim=2) # (B, 24, S+HW+NC)
|
178 |
-
key = torch.cat([key, cond_key], dim=2)
|
179 |
-
value = torch.cat([value, cond_value], dim=2)
|
180 |
-
|
181 |
-
attention_mask = torch.ones(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bool)
|
182 |
-
cond_length = condition_latents.shape[1]
|
183 |
-
assert len(text_cond_mask.shape) == 2 or len(text_cond_mask.shape) == 3
|
184 |
-
if len(text_cond_mask.shape) == 2:
|
185 |
-
text_cond_mask = text_cond_mask.unsqueeze(-1)
|
186 |
-
N = text_cond_mask.shape[-1] # num_condition
|
187 |
-
tokens_per_cond = cond_length // N
|
188 |
-
|
189 |
-
seq_length = 0
|
190 |
-
if encoder_hidden_states is not None:
|
191 |
-
seq_length = encoder_hidden_states_query_proj.shape[2]
|
192 |
-
img_length = hidden_states.shape[1]
|
193 |
-
else:
|
194 |
-
seq_length = 128 # TODO, pass it here
|
195 |
-
img_length = hidden_states.shape[1] - seq_length
|
196 |
-
|
197 |
-
if not model_config.get("cond_cond_cross_attn", True):
|
198 |
-
# no cross attention between different conds
|
199 |
-
cond_start = seq_length + img_length
|
200 |
-
attention_mask[:, :, cond_start:, cond_start:] = False
|
201 |
-
|
202 |
-
for j in range(N):
|
203 |
-
start = cond_start + tokens_per_cond * j
|
204 |
-
end = cond_start + tokens_per_cond * (j + 1)
|
205 |
-
attention_mask[..., start:end, start:end] = True
|
206 |
-
|
207 |
-
# double block
|
208 |
-
if encoder_hidden_states is not None:
|
209 |
-
|
210 |
-
# no cross attention
|
211 |
-
attention_mask[..., :-cond_length, -cond_length:] = False
|
212 |
-
|
213 |
-
if model_config.get("use_attention_double", False) and last_attn_map is not None:
|
214 |
-
attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
|
215 |
-
last_attn_map = last_attn_map.to(query.device)
|
216 |
-
attention_mask[..., seq_length:-cond_length, :seq_length] = torch.log(last_attn_map/last_attn_map.mean()*model_config["use_atten_lambda"]).view(-1, seq_length)
|
217 |
-
|
218 |
-
# single block
|
219 |
-
else:
|
220 |
-
# print(last_attn_map)
|
221 |
-
if model_config.get("use_attention_single", False) and last_attn_map is not None:
|
222 |
-
attention_mask = torch.zeros(batch_size, 1, query.shape[2], key.shape[2], device=query.device, dtype=torch.bfloat16)
|
223 |
-
attention_mask[..., :seq_length, -cond_length:] = float('-inf')
|
224 |
-
# 确保 use_atten_lambda 是列表
|
225 |
-
use_atten_lambdas = model_config["use_atten_lambda"] if len(model_config["use_atten_lambda"])!=1 else model_config["use_atten_lambda"] * (N+1)
|
226 |
-
attention_mask[..., -cond_length:, seq_length:-cond_length] = math.log(use_atten_lambdas[0])
|
227 |
-
last_attn_map = last_attn_map.to(query.device)
|
228 |
-
|
229 |
-
cond2latents = []
|
230 |
-
for i in range(batch_size):
|
231 |
-
AM = last_attn_map[i] # (H, W, S)
|
232 |
-
for j in range(N):
|
233 |
-
start = seq_length + img_length + tokens_per_cond * j
|
234 |
-
mask = text_cond_mask[i, :, j] # (S,)
|
235 |
-
weighted_AM = AM * mask.unsqueeze(0).unsqueeze(0) # 扩展 mask 维度以匹配 AM
|
236 |
-
|
237 |
-
cond2latent = weighted_AM.mean(-1)
|
238 |
-
if model_config.get("attention_norm", "mean") == "max":
|
239 |
-
cond2latent = cond2latent / cond2latent.max() # 归一化
|
240 |
-
else:
|
241 |
-
cond2latent = cond2latent / cond2latent.mean() # 归一化
|
242 |
-
cond2latent = cond2latent.view(-1,) # (WH,)
|
243 |
-
|
244 |
-
# 使用对应 condition 的 lambda 值
|
245 |
-
current_lambda = use_atten_lambdas[j+1]
|
246 |
-
# 将 cond2latent 复制到 attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
|
247 |
-
attention_mask[i, 0, seq_length:-cond_length, start:start+tokens_per_cond] = torch.log(current_lambda * cond2latent.unsqueeze(-1))
|
248 |
-
|
249 |
-
# 将 text_cond_mask[i, :, j].unsqueeze(-1) 为 true 的位置设置为当前 lambda 值
|
250 |
-
cond = mask.unsqueeze(-1).expand(-1, tokens_per_cond)
|
251 |
-
sub_mask = attention_mask[i, 0, :seq_length, start:start+tokens_per_cond]
|
252 |
-
attention_mask[i, 0, :seq_length, start:start+tokens_per_cond] = torch.where(cond, math.log(current_lambda), sub_mask)
|
253 |
-
cond2latents.append(
|
254 |
-
cond2latent.reshape(latent_height, -1).detach().cpu()
|
255 |
-
)
|
256 |
-
if store_attn_map:
|
257 |
-
if not hasattr(attn, "cond2latents"):
|
258 |
-
attn.cond2latents = []
|
259 |
-
attn.cond_timesteps = []
|
260 |
-
attn.cond2latents.append(torch.stack(cond2latents, dim=0)) # (N, H, W)
|
261 |
-
attn.cond_timesteps.append(timestep.cpu())
|
262 |
-
|
263 |
-
pass
|
264 |
-
else:
|
265 |
-
raise NotImplementedError()
|
266 |
-
if hasattr(attn, "c_factor"):
|
267 |
-
assert False
|
268 |
-
attention_mask = torch.zeros(
|
269 |
-
query.shape[2], key.shape[2], device=query.device, dtype=query.dtype
|
270 |
-
)
|
271 |
-
bias = torch.log(attn.c_factor[0])
|
272 |
-
attention_mask[-cond_length:, :-cond_length] = bias
|
273 |
-
attention_mask[:-cond_length, -cond_length:] = bias
|
274 |
-
|
275 |
-
####################################################################################################
|
276 |
-
if store_attn_map and encoder_hidden_states is not None:
|
277 |
-
seq_length = encoder_hidden_states_query_proj.shape[2]
|
278 |
-
img_length = hidden_states.shape[1]
|
279 |
-
hidden_states, attention_probs = scaled_dot_product_attention(
|
280 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
281 |
-
)
|
282 |
-
# (B, 24, S+HW, S+HW) -> (B, 24, HW, S)
|
283 |
-
t2i_attention_probs = attention_probs[:, :, seq_length:seq_length+img_length, :seq_length]
|
284 |
-
# (B, 24, S+HW, S+HW) -> (B, 24, S, HW) -> (B, 24, HW, S)
|
285 |
-
i2t_attention_probs = attention_probs[:, :, :seq_length, seq_length:seq_length+img_length].transpose(-1, -2)
|
286 |
-
|
287 |
-
if not hasattr(attn, "attn_maps"):
|
288 |
-
attn.attn_maps = []
|
289 |
-
attn.timestep = []
|
290 |
-
|
291 |
-
attn.attn_maps.append(
|
292 |
-
(
|
293 |
-
rearrange(t2i_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
|
294 |
-
rearrange(i2t_attention_probs, 'B attn_head (H W) attn_dim -> B attn_head H W attn_dim', H=latent_height),
|
295 |
-
)
|
296 |
-
)
|
297 |
-
|
298 |
-
attn.timestep.append(timestep.cpu())
|
299 |
-
has_nan = torch.isnan(hidden_states).any().item()
|
300 |
-
if has_nan:
|
301 |
-
print("[attn_forward] detect nan hidden_states in store_attn_map")
|
302 |
-
else:
|
303 |
-
hidden_states = F.scaled_dot_product_attention(
|
304 |
-
query, key, value, attn_mask=attention_mask, dropout_p=0.0, is_causal=False
|
305 |
-
)
|
306 |
-
has_nan = torch.isnan(hidden_states).any().item()
|
307 |
-
if has_nan:
|
308 |
-
print("[attn_forward] detect nan hidden_states")
|
309 |
-
####################################################################################################
|
310 |
-
hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim).to(query.dtype)
|
311 |
-
|
312 |
-
if encoder_hidden_states is not None:
|
313 |
-
if condition_latents is not None:
|
314 |
-
encoder_hidden_states, hidden_states, condition_latents = (
|
315 |
-
hidden_states[:, : encoder_hidden_states.shape[1]],
|
316 |
-
hidden_states[
|
317 |
-
:, encoder_hidden_states.shape[1] : -condition_latents.shape[1]
|
318 |
-
],
|
319 |
-
hidden_states[:, -condition_latents.shape[1] :],
|
320 |
-
)
|
321 |
-
if model_config.get("latent_cond_by_text_attn", False):
|
322 |
-
# hidden_states += add_latent # (B, HW, D)
|
323 |
-
hidden_states = new_hidden_states # (B, HW, D)
|
324 |
-
|
325 |
-
else:
|
326 |
-
encoder_hidden_states, hidden_states = (
|
327 |
-
hidden_states[:, : encoder_hidden_states.shape[1]],
|
328 |
-
hidden_states[:, encoder_hidden_states.shape[1] :],
|
329 |
-
)
|
330 |
-
|
331 |
-
|
332 |
-
with enable_lora((attn.to_out[0],), model_config["latent_lora"]):
|
333 |
-
hidden_states = attn.to_out[0](hidden_states) # linear proj
|
334 |
-
hidden_states = attn.to_out[1](hidden_states) # dropout
|
335 |
-
with enable_lora((attn.to_add_out,), model_config["text_lora"]):
|
336 |
-
encoder_hidden_states = attn.to_add_out(encoder_hidden_states)
|
337 |
-
|
338 |
-
if condition_latents is not None:
|
339 |
-
cond_lora_activate = model_config["use_condition_dblock_lora"]
|
340 |
-
with enable_lora(
|
341 |
-
(attn.to_out[0],),
|
342 |
-
dit_activated=not cond_lora_activate, cond_activated=cond_lora_activate,
|
343 |
-
):
|
344 |
-
condition_latents = attn.to_out[0](condition_latents)
|
345 |
-
condition_latents = attn.to_out[1](condition_latents)
|
346 |
-
|
347 |
-
|
348 |
-
return (
|
349 |
-
(hidden_states, encoder_hidden_states, condition_latents)
|
350 |
-
if condition_latents is not None
|
351 |
-
else (hidden_states, encoder_hidden_states)
|
352 |
-
)
|
353 |
-
elif condition_latents is not None:
|
354 |
-
hidden_states, condition_latents = (
|
355 |
-
hidden_states[:, : -condition_latents.shape[1]],
|
356 |
-
hidden_states[:, -condition_latents.shape[1] :],
|
357 |
-
)
|
358 |
-
return hidden_states, condition_latents
|
359 |
-
else:
|
360 |
-
return hidden_states
|
361 |
-
|
362 |
-
|
363 |
-
def set_delta_by_start_end(
|
364 |
-
start_ends,
|
365 |
-
src_delta_emb, src_delta_emb_pblock,
|
366 |
-
delta_emb, delta_emb_pblock, delta_emb_mask,
|
367 |
-
):
|
368 |
-
for (i, j, src_s, src_e, tar_s, tar_e) in start_ends:
|
369 |
-
if src_delta_emb is not None:
|
370 |
-
delta_emb[i, tar_s:tar_e] = src_delta_emb[j, src_s:src_e]
|
371 |
-
if src_delta_emb_pblock is not None:
|
372 |
-
delta_emb_pblock[i, tar_s:tar_e] = src_delta_emb_pblock[j, src_s:src_e]
|
373 |
-
delta_emb_mask[i, tar_s:tar_e] = True
|
374 |
-
return delta_emb, delta_emb_pblock, delta_emb_mask
|
375 |
-
|
376 |
-
def norm1_context_forward(
|
377 |
-
self,
|
378 |
-
x: torch.Tensor,
|
379 |
-
condition_latents: Optional[torch.Tensor] = None,
|
380 |
-
timestep: Optional[torch.Tensor] = None,
|
381 |
-
class_labels: Optional[torch.LongTensor] = None,
|
382 |
-
hidden_dtype: Optional[torch.dtype] = None,
|
383 |
-
emb: Optional[torch.Tensor] = None,
|
384 |
-
delta_emb: Optional[torch.Tensor] = None,
|
385 |
-
delta_emb_cblock: Optional[torch.Tensor] = None,
|
386 |
-
delta_emb_mask: Optional[torch.Tensor] = None,
|
387 |
-
delta_start_ends = None,
|
388 |
-
mod_adapter = None,
|
389 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
390 |
-
batch_size, seq_length = x.shape[:2]
|
391 |
-
|
392 |
-
if mod_adapter is not None:
|
393 |
-
assert False
|
394 |
-
|
395 |
-
if delta_emb is None:
|
396 |
-
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
|
397 |
-
emb = emb.unsqueeze(1) # (B, 1, 18432)
|
398 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
|
399 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
|
400 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
401 |
-
else:
|
402 |
-
# (B, 3072) > (B, 18432) -> (B, S, 18432)
|
403 |
-
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
|
404 |
-
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
|
405 |
-
if delta_emb_cblock is None:
|
406 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
|
407 |
-
else:
|
408 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
|
409 |
-
emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
|
410 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, S, 3072)
|
411 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072)
|
412 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
413 |
-
|
414 |
-
|
415 |
-
def norm1_forward(
|
416 |
-
self,
|
417 |
-
x: torch.Tensor,
|
418 |
-
timestep: Optional[torch.Tensor] = None,
|
419 |
-
class_labels: Optional[torch.LongTensor] = None,
|
420 |
-
hidden_dtype: Optional[torch.dtype] = None,
|
421 |
-
emb: Optional[torch.Tensor] = None,
|
422 |
-
delta_emb: Optional[torch.Tensor] = None,
|
423 |
-
delta_emb_cblock: Optional[torch.Tensor] = None,
|
424 |
-
delta_emb_mask: Optional[torch.Tensor] = None,
|
425 |
-
t2i_attn_map: Optional[torch.Tensor] = None,
|
426 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
427 |
-
if delta_emb is None:
|
428 |
-
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 18432)
|
429 |
-
emb = emb.unsqueeze(1) # (B, 1, 18432)
|
430 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, 1, 3072)
|
431 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, 1, 3072)
|
432 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
433 |
-
else:
|
434 |
-
raise NotImplementedError()
|
435 |
-
batch_size, HW = x.shape[:2]
|
436 |
-
seq_length = t2i_attn_map.shape[-1]
|
437 |
-
# (B, 3072) > (B, 18432) -> (B, S, 18432)
|
438 |
-
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, seq_length, -1))
|
439 |
-
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 18432)
|
440 |
-
if delta_emb_cblock is None:
|
441 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
|
442 |
-
else:
|
443 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
|
444 |
-
# attn_weight (B, HW, S)
|
445 |
-
emb = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig) # (B, S, 18432)
|
446 |
-
emb = t2i_attn_map @ emb # (B, HW, 18432)
|
447 |
-
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = emb.chunk(6, dim=-1) # (B, HW, 3072)
|
448 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, HW, 3072)
|
449 |
-
return x, gate_msa, shift_mlp, scale_mlp, gate_mlp
|
450 |
-
|
451 |
-
|
452 |
-
def block_forward(
|
453 |
-
self,
|
454 |
-
hidden_states: torch.FloatTensor,
|
455 |
-
encoder_hidden_states: torch.FloatTensor,
|
456 |
-
condition_latents: torch.FloatTensor,
|
457 |
-
temb: torch.FloatTensor,
|
458 |
-
cond_temb: torch.FloatTensor,
|
459 |
-
text_cond_mask: Optional[torch.FloatTensor] = None,
|
460 |
-
delta_emb: Optional[torch.FloatTensor] = None,
|
461 |
-
delta_emb_cblock: Optional[torch.FloatTensor] = None,
|
462 |
-
delta_emb_mask: Optional[torch.Tensor] = None,
|
463 |
-
delta_start_ends = None,
|
464 |
-
cond_rotary_emb=None,
|
465 |
-
image_rotary_emb=None,
|
466 |
-
model_config: Optional[Dict[str, Any]] = {},
|
467 |
-
store_attn_map: bool = False,
|
468 |
-
use_text_mod: bool = True,
|
469 |
-
use_img_mod: bool = False,
|
470 |
-
mod_adapter = None,
|
471 |
-
latent_height: Optional[int] = None,
|
472 |
-
timestep: Optional[torch.Tensor] = None,
|
473 |
-
last_attn_map: Optional[torch.Tensor] = None,
|
474 |
-
):
|
475 |
-
batch_size = hidden_states.shape[0]
|
476 |
-
use_cond = condition_latents is not None
|
477 |
-
|
478 |
-
train_partial_latent_lora = model_config.get("train_partial_latent_lora", False)
|
479 |
-
train_partial_text_lora = model_config.get("train_partial_text_lora", False)
|
480 |
-
if train_partial_latent_lora:
|
481 |
-
train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "")
|
482 |
-
activate_norm1 = activate_ff = True
|
483 |
-
if "norm1" not in train_partial_latent_lora_layers:
|
484 |
-
activate_norm1 = False
|
485 |
-
if "ff" not in train_partial_latent_lora_layers:
|
486 |
-
activate_ff = False
|
487 |
-
|
488 |
-
if train_partial_text_lora:
|
489 |
-
train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "")
|
490 |
-
activate_norm1_context = activate_ff_context = True
|
491 |
-
if "norm1" not in train_partial_text_lora_layers:
|
492 |
-
activate_norm1_context = False
|
493 |
-
if "ff" not in train_partial_text_lora_layers:
|
494 |
-
activate_ff_context = False
|
495 |
-
|
496 |
-
if use_cond:
|
497 |
-
cond_lora_activate = model_config["use_condition_dblock_lora"]
|
498 |
-
with enable_lora(
|
499 |
-
(self.norm1.linear,),
|
500 |
-
dit_activated=activate_norm1 if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
|
501 |
-
):
|
502 |
-
norm_condition_latents, cond_gate_msa, cond_shift_mlp, cond_scale_mlp, cond_gate_mlp = (
|
503 |
-
norm1_forward(
|
504 |
-
self.norm1,
|
505 |
-
condition_latents,
|
506 |
-
emb=cond_temb,
|
507 |
-
)
|
508 |
-
)
|
509 |
-
delta_emb_img = delta_emb_img_cblock = None
|
510 |
-
if use_img_mod and use_text_mod:
|
511 |
-
if delta_emb is not None:
|
512 |
-
delta_emb_img, delta_emb = delta_emb.chunk(2, dim=-1)
|
513 |
-
if delta_emb_cblock is not None:
|
514 |
-
delta_emb_img_cblock, delta_emb_cblock = delta_emb_cblock.chunk(2, dim=-1)
|
515 |
-
|
516 |
-
with enable_lora((self.norm1.linear,), activate_norm1 if train_partial_latent_lora else model_config["latent_lora"]):
|
517 |
-
if use_img_mod and encoder_hidden_states is not None:
|
518 |
-
with torch.no_grad():
|
519 |
-
attn = self.attn
|
520 |
-
|
521 |
-
norm_img = self.norm1(hidden_states, emb=temb)[0]
|
522 |
-
norm_text = self.norm1_context(encoder_hidden_states, emb=temb)[0]
|
523 |
-
|
524 |
-
img_query = attn.to_q(norm_img)
|
525 |
-
img_key = attn.to_k(norm_img)
|
526 |
-
text_query = attn.add_q_proj(norm_text)
|
527 |
-
text_key = attn.add_k_proj(norm_text)
|
528 |
-
|
529 |
-
inner_dim = img_key.shape[-1]
|
530 |
-
head_dim = inner_dim // attn.heads
|
531 |
-
|
532 |
-
img_query = img_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D)
|
533 |
-
img_key = img_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, HW, D)
|
534 |
-
text_query = text_query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D)
|
535 |
-
text_key = text_key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) # (B, N, S, D)
|
536 |
-
|
537 |
-
if attn.norm_q is not None:
|
538 |
-
img_query = attn.norm_q(img_query)
|
539 |
-
if attn.norm_added_q is not None:
|
540 |
-
text_query = attn.norm_added_q(text_query)
|
541 |
-
if attn.norm_k is not None:
|
542 |
-
img_key = attn.norm_k(img_key)
|
543 |
-
if attn.norm_added_k is not None:
|
544 |
-
text_key = attn.norm_added_k(text_key)
|
545 |
-
|
546 |
-
query = torch.cat([text_query, img_query], dim=2) # (B, N, S+HW, D)
|
547 |
-
key = torch.cat([text_key, img_key], dim=2) # (B, N, S+HW, D)
|
548 |
-
if image_rotary_emb is not None:
|
549 |
-
query = apply_rotary_emb(query, image_rotary_emb)
|
550 |
-
key = apply_rotary_emb(key, image_rotary_emb)
|
551 |
-
|
552 |
-
seq_length = text_query.shape[2]
|
553 |
-
|
554 |
-
scale_factor = 1 / math.sqrt(query.size(-1))
|
555 |
-
t2i_attn_map = query @ key.transpose(-2, -1) * scale_factor # (B, N, S+HW, S+HW)
|
556 |
-
t2i_attn_map = t2i_attn_map.mean(1)[:, seq_length:, :seq_length] # (B, S+HW, S+HW) -> (B, HW, S)
|
557 |
-
t2i_attn_map = torch.softmax(t2i_attn_map, dim=-1) # (B, HW, S)
|
558 |
-
|
559 |
-
else:
|
560 |
-
t2i_attn_map = None
|
561 |
-
|
562 |
-
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
|
563 |
-
norm1_forward(
|
564 |
-
self.norm1,
|
565 |
-
hidden_states,
|
566 |
-
emb=temb,
|
567 |
-
delta_emb=delta_emb_img,
|
568 |
-
delta_emb_cblock=delta_emb_img_cblock,
|
569 |
-
delta_emb_mask=delta_emb_mask,
|
570 |
-
t2i_attn_map=t2i_attn_map,
|
571 |
-
)
|
572 |
-
)
|
573 |
-
# Modulation for double block
|
574 |
-
with enable_lora((self.norm1_context.linear,), activate_norm1_context if train_partial_text_lora else model_config["text_lora"]):
|
575 |
-
norm_encoder_hidden_states, c_gate_msa, c_shift_mlp, c_scale_mlp, c_gate_mlp = (
|
576 |
-
norm1_context_forward(
|
577 |
-
self.norm1_context,
|
578 |
-
encoder_hidden_states,
|
579 |
-
emb=temb,
|
580 |
-
delta_emb=delta_emb if use_text_mod else None,
|
581 |
-
delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
|
582 |
-
delta_emb_mask=delta_emb_mask if use_text_mod else None,
|
583 |
-
delta_start_ends=delta_start_ends if use_text_mod else None,
|
584 |
-
mod_adapter=mod_adapter,
|
585 |
-
condition_latents=condition_latents,
|
586 |
-
)
|
587 |
-
)
|
588 |
-
|
589 |
-
# Attention.
|
590 |
-
result = attn_forward(
|
591 |
-
self.attn,
|
592 |
-
model_config=model_config,
|
593 |
-
hidden_states=norm_hidden_states,
|
594 |
-
encoder_hidden_states=norm_encoder_hidden_states,
|
595 |
-
condition_latents=norm_condition_latents if use_cond else None,
|
596 |
-
text_cond_mask=text_cond_mask if use_cond else None,
|
597 |
-
image_rotary_emb=image_rotary_emb,
|
598 |
-
cond_rotary_emb=cond_rotary_emb if use_cond else None,
|
599 |
-
store_attn_map=store_attn_map,
|
600 |
-
latent_height=latent_height,
|
601 |
-
timestep=timestep,
|
602 |
-
last_attn_map=last_attn_map,
|
603 |
-
)
|
604 |
-
attn_output, context_attn_output = result[:2]
|
605 |
-
cond_attn_output = result[2] if use_cond else None
|
606 |
-
|
607 |
-
# Process attention outputs for the `hidden_states`.
|
608 |
-
# 1. hidden_states
|
609 |
-
attn_output = gate_msa * attn_output # NOTE: changed by img mod
|
610 |
-
hidden_states = hidden_states + attn_output
|
611 |
-
# 2. encoder_hidden_states
|
612 |
-
context_attn_output = c_gate_msa * context_attn_output # NOTE: changed by delta_temb
|
613 |
-
encoder_hidden_states = encoder_hidden_states + context_attn_output
|
614 |
-
# 3. condition_latents
|
615 |
-
if use_cond:
|
616 |
-
cond_attn_output = cond_gate_msa * cond_attn_output # NOTE: changed by img mod
|
617 |
-
condition_latents = condition_latents + cond_attn_output
|
618 |
-
if model_config.get("add_cond_attn", False):
|
619 |
-
hidden_states += cond_attn_output
|
620 |
-
|
621 |
-
# LayerNorm + MLP.
|
622 |
-
# 1. hidden_states
|
623 |
-
norm_hidden_states = self.norm2(hidden_states)
|
624 |
-
norm_hidden_states = (
|
625 |
-
norm_hidden_states * (1 + scale_mlp) + shift_mlp # NOTE: changed by img mod
|
626 |
-
)
|
627 |
-
# 2. encoder_hidden_states
|
628 |
-
norm_encoder_hidden_states = self.norm2_context(encoder_hidden_states)
|
629 |
-
norm_encoder_hidden_states = (
|
630 |
-
norm_encoder_hidden_states * (1 + c_scale_mlp) + c_shift_mlp # NOTE: changed by delta_temb
|
631 |
-
)
|
632 |
-
# 3. condition_latents
|
633 |
-
if use_cond:
|
634 |
-
norm_condition_latents = self.norm2(condition_latents)
|
635 |
-
norm_condition_latents = (
|
636 |
-
norm_condition_latents * (1 + cond_scale_mlp) + cond_shift_mlp # NOTE: changed by img mod
|
637 |
-
)
|
638 |
-
|
639 |
-
# Feed-forward.
|
640 |
-
with enable_lora((self.ff.net[2],), activate_ff if train_partial_latent_lora else model_config["latent_lora"]):
|
641 |
-
# 1. hidden_states
|
642 |
-
ff_output = self.ff(norm_hidden_states)
|
643 |
-
ff_output = gate_mlp * ff_output # NOTE: changed by img mod
|
644 |
-
# 2. encoder_hidden_states
|
645 |
-
with enable_lora((self.ff_context.net[2],), activate_ff_context if train_partial_text_lora else model_config["text_lora"]):
|
646 |
-
context_ff_output = self.ff_context(norm_encoder_hidden_states)
|
647 |
-
context_ff_output = c_gate_mlp * context_ff_output # NOTE: changed by delta_temb
|
648 |
-
# 3. condition_latents
|
649 |
-
if use_cond:
|
650 |
-
cond_lora_activate = model_config["use_condition_dblock_lora"]
|
651 |
-
with enable_lora(
|
652 |
-
(self.ff.net[2],),
|
653 |
-
dit_activated=activate_ff if train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
|
654 |
-
):
|
655 |
-
cond_ff_output = self.ff(norm_condition_latents)
|
656 |
-
cond_ff_output = cond_gate_mlp * cond_ff_output # NOTE: changed by img mod
|
657 |
-
|
658 |
-
# Process feed-forward outputs.
|
659 |
-
hidden_states = hidden_states + ff_output
|
660 |
-
encoder_hidden_states = encoder_hidden_states + context_ff_output
|
661 |
-
if use_cond:
|
662 |
-
condition_latents = condition_latents + cond_ff_output
|
663 |
-
|
664 |
-
# Clip to avoid overflow.
|
665 |
-
if encoder_hidden_states.dtype == torch.float16:
|
666 |
-
encoder_hidden_states = encoder_hidden_states.clip(-65504, 65504)
|
667 |
-
|
668 |
-
return encoder_hidden_states, hidden_states, condition_latents if use_cond else None
|
669 |
-
|
670 |
-
def single_norm_forward(
|
671 |
-
self,
|
672 |
-
x: torch.Tensor,
|
673 |
-
timestep: Optional[torch.Tensor] = None,
|
674 |
-
class_labels: Optional[torch.LongTensor] = None,
|
675 |
-
hidden_dtype: Optional[torch.dtype] = None,
|
676 |
-
emb: Optional[torch.Tensor] = None,
|
677 |
-
delta_emb: Optional[torch.Tensor] = None,
|
678 |
-
delta_emb_cblock: Optional[torch.Tensor] = None,
|
679 |
-
delta_emb_mask: Optional[torch.Tensor] = None,
|
680 |
-
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
|
681 |
-
if delta_emb is None:
|
682 |
-
emb = self.linear(self.silu(emb)) # (B, 3072) -> (B, 9216)
|
683 |
-
emb = emb.unsqueeze(1) # (B, 1, 9216)
|
684 |
-
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, 1, 3072)
|
685 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S, 3072) * (B, 1, 3072)
|
686 |
-
return x, gate_msa
|
687 |
-
else:
|
688 |
-
img_text_seq_length = x.shape[1] # S+
|
689 |
-
text_seq_length = delta_emb_mask.shape[1] # S
|
690 |
-
# (B, 3072) -> (B, 9216) -> (B, S+, 9216)
|
691 |
-
emb_orig = self.linear(self.silu(emb)).unsqueeze(1).expand((-1, img_text_seq_length, -1))
|
692 |
-
# (B, 3072) -> (B, 1, 3072) -> (B, S, 3072) -> (B, S, 9216)
|
693 |
-
if delta_emb_cblock is None:
|
694 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb))
|
695 |
-
else:
|
696 |
-
emb_new = self.linear(self.silu(emb.unsqueeze(1) + delta_emb + delta_emb_cblock))
|
697 |
-
|
698 |
-
emb_text = torch.where(delta_emb_mask.unsqueeze(-1), emb_new, emb_orig[:, :text_seq_length]) # (B, S, 9216)
|
699 |
-
emb_img = emb_orig[:, text_seq_length:] # (B, s, 9216)
|
700 |
-
emb = torch.cat([emb_text, emb_img], dim=1) # (B, S+, 9216)
|
701 |
-
|
702 |
-
shift_msa, scale_msa, gate_msa = emb.chunk(3, dim=-1) # (B, S+, 3072)
|
703 |
-
x = self.norm(x) * (1 + scale_msa) + shift_msa # (B, S+, 3072)
|
704 |
-
return x, gate_msa
|
705 |
-
|
706 |
-
|
707 |
-
def single_block_forward(
|
708 |
-
self,
|
709 |
-
hidden_states: torch.FloatTensor,
|
710 |
-
temb: torch.FloatTensor,
|
711 |
-
image_rotary_emb=None,
|
712 |
-
condition_latents: torch.FloatTensor = None,
|
713 |
-
text_cond_mask: torch.FloatTensor = None,
|
714 |
-
cond_temb: torch.FloatTensor = None,
|
715 |
-
delta_emb: Optional[torch.FloatTensor] = None,
|
716 |
-
delta_emb_cblock: Optional[torch.FloatTensor] = None,
|
717 |
-
delta_emb_mask: Optional[torch.Tensor] = None,
|
718 |
-
use_text_mod: bool = True,
|
719 |
-
use_img_mod: bool = False,
|
720 |
-
cond_rotary_emb=None,
|
721 |
-
latent_height: Optional[int] = None,
|
722 |
-
timestep: Optional[torch.Tensor] = None,
|
723 |
-
store_attn_map: bool = False,
|
724 |
-
model_config: Optional[Dict[str, Any]] = {},
|
725 |
-
last_attn_map: Optional[torch.Tensor] = None,
|
726 |
-
latent_sblora_weight=None,
|
727 |
-
condition_sblora_weight=None,
|
728 |
-
):
|
729 |
-
|
730 |
-
using_cond = condition_latents is not None
|
731 |
-
residual = hidden_states
|
732 |
-
|
733 |
-
train_partial_lora = model_config.get("train_partial_lora", False)
|
734 |
-
if train_partial_lora:
|
735 |
-
train_partial_lora_layers = model_config.get("train_partial_lora_layers", "")
|
736 |
-
activate_norm = activate_projmlp = activate_projout = True
|
737 |
-
|
738 |
-
if "norm" not in train_partial_lora_layers:
|
739 |
-
activate_norm = False
|
740 |
-
if "projmlp" not in train_partial_lora_layers:
|
741 |
-
activate_projmlp = False
|
742 |
-
if "projout" not in train_partial_lora_layers:
|
743 |
-
activate_projout = False
|
744 |
-
|
745 |
-
with enable_lora((self.norm.linear,), activate_norm if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
|
746 |
-
# Modulation for single block
|
747 |
-
norm_hidden_states, gate = single_norm_forward(
|
748 |
-
self.norm,
|
749 |
-
hidden_states,
|
750 |
-
emb=temb,
|
751 |
-
delta_emb=delta_emb if use_text_mod else None,
|
752 |
-
delta_emb_cblock=delta_emb_cblock if use_text_mod else None,
|
753 |
-
delta_emb_mask=delta_emb_mask if use_text_mod else None,
|
754 |
-
)
|
755 |
-
with enable_lora((self.proj_mlp,), activate_projmlp if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
|
756 |
-
mlp_hidden_states = self.act_mlp(self.proj_mlp(norm_hidden_states))
|
757 |
-
if using_cond:
|
758 |
-
cond_lora_activate = model_config["use_condition_sblock_lora"]
|
759 |
-
with enable_lora(
|
760 |
-
(self.norm.linear,),
|
761 |
-
dit_activated=activate_norm if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
|
762 |
-
):
|
763 |
-
residual_cond = condition_latents
|
764 |
-
norm_condition_latents, cond_gate = self.norm(condition_latents, emb=cond_temb)
|
765 |
-
with enable_lora(
|
766 |
-
(self.proj_mlp,),
|
767 |
-
dit_activated=activate_projmlp if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
|
768 |
-
):
|
769 |
-
mlp_cond_hidden_states = self.act_mlp(self.proj_mlp(norm_condition_latents))
|
770 |
-
|
771 |
-
attn_output = attn_forward(
|
772 |
-
self.attn,
|
773 |
-
model_config=model_config,
|
774 |
-
hidden_states=norm_hidden_states,
|
775 |
-
image_rotary_emb=image_rotary_emb,
|
776 |
-
last_attn_map=last_attn_map,
|
777 |
-
latent_height=latent_height,
|
778 |
-
store_attn_map=store_attn_map,
|
779 |
-
timestep=timestep,
|
780 |
-
latent_sblora_weight=latent_sblora_weight,
|
781 |
-
condition_sblora_weight=condition_sblora_weight,
|
782 |
-
**(
|
783 |
-
{
|
784 |
-
"condition_latents": norm_condition_latents,
|
785 |
-
"cond_rotary_emb": cond_rotary_emb if using_cond else None,
|
786 |
-
"text_cond_mask": text_cond_mask if using_cond else None,
|
787 |
-
}
|
788 |
-
if using_cond
|
789 |
-
else {}
|
790 |
-
),
|
791 |
-
)
|
792 |
-
if using_cond:
|
793 |
-
attn_output, cond_attn_output = attn_output
|
794 |
-
|
795 |
-
with enable_lora((self.proj_out,), activate_projout if train_partial_lora else model_config["sblock_lora"], latent_sblora_weight=latent_sblora_weight):
|
796 |
-
hidden_states = torch.cat([attn_output, mlp_hidden_states], dim=2)
|
797 |
-
# gate = (B, 1, 3072) or (B, S+, 3072)
|
798 |
-
hidden_states = gate * self.proj_out(hidden_states)
|
799 |
-
hidden_states = residual + hidden_states
|
800 |
-
if using_cond:
|
801 |
-
cond_lora_activate = model_config["use_condition_sblock_lora"]
|
802 |
-
with enable_lora(
|
803 |
-
(self.proj_out,),
|
804 |
-
dit_activated=activate_projout if train_partial_lora else not cond_lora_activate, cond_activated=cond_lora_activate, latent_sblora_weight=condition_sblora_weight
|
805 |
-
):
|
806 |
-
condition_latents = torch.cat([cond_attn_output, mlp_cond_hidden_states], dim=2)
|
807 |
-
cond_gate = cond_gate.unsqueeze(1)
|
808 |
-
condition_latents = cond_gate * self.proj_out(condition_latents)
|
809 |
-
condition_latents = residual_cond + condition_latents
|
810 |
-
|
811 |
-
if hidden_states.dtype == torch.float16:
|
812 |
-
hidden_states = hidden_states.clip(-65504, 65504)
|
813 |
-
|
814 |
-
return hidden_states if not using_cond else (hidden_states, condition_latents)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/condition.py
DELETED
@@ -1,133 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import torch
|
17 |
-
from typing import Optional, Union, List, Tuple
|
18 |
-
from diffusers.pipelines import FluxPipeline
|
19 |
-
from PIL import Image, ImageFilter
|
20 |
-
import numpy as np
|
21 |
-
import cv2
|
22 |
-
|
23 |
-
import src.flux.pipeline_tools
|
24 |
-
|
25 |
-
# condition_dict = {
|
26 |
-
# "depth": 0,
|
27 |
-
# "canny": 1,
|
28 |
-
# "subject": 4,
|
29 |
-
# "coloring": 6,
|
30 |
-
# "deblurring": 7,
|
31 |
-
# "depth_pred": 8,
|
32 |
-
# "fill": 9,
|
33 |
-
# "sr": 10,
|
34 |
-
# }
|
35 |
-
|
36 |
-
|
37 |
-
# class Condition(object):
|
38 |
-
# def __init__(
|
39 |
-
# self,
|
40 |
-
# condition_type: str,
|
41 |
-
# raw_img: Union[Image.Image, torch.Tensor] = None,
|
42 |
-
# condition: Union[Image.Image, torch.Tensor] = None,
|
43 |
-
# mask=None,
|
44 |
-
# position_delta=None,
|
45 |
-
# ) -> None:
|
46 |
-
# self.condition_type = condition_type
|
47 |
-
# assert raw_img is not None or condition is not None
|
48 |
-
# if raw_img is not None:
|
49 |
-
# self.condition = self.get_condition(condition_type, raw_img)
|
50 |
-
# else:
|
51 |
-
# self.condition = condition
|
52 |
-
# self.position_delta = position_delta
|
53 |
-
# # TODO: Add mask support
|
54 |
-
# assert mask is None, "Mask not supported yet"
|
55 |
-
|
56 |
-
# def get_condition(
|
57 |
-
# self, condition_type: str, raw_img: Union[Image.Image, torch.Tensor]
|
58 |
-
# ) -> Union[Image.Image, torch.Tensor]:
|
59 |
-
# """
|
60 |
-
# Returns the condition image.
|
61 |
-
# """
|
62 |
-
# if condition_type == "depth":
|
63 |
-
# from transformers import pipeline
|
64 |
-
|
65 |
-
# depth_pipe = pipeline(
|
66 |
-
# task="depth-estimation",
|
67 |
-
# model="LiheYoung/depth-anything-small-hf",
|
68 |
-
# device="cuda",
|
69 |
-
# )
|
70 |
-
# source_image = raw_img.convert("RGB")
|
71 |
-
# condition_img = depth_pipe(source_image)["depth"].convert("RGB")
|
72 |
-
# return condition_img
|
73 |
-
# elif condition_type == "canny":
|
74 |
-
# img = np.array(raw_img)
|
75 |
-
# edges = cv2.Canny(img, 100, 200)
|
76 |
-
# edges = Image.fromarray(edges).convert("RGB")
|
77 |
-
# return edges
|
78 |
-
# elif condition_type == "subject":
|
79 |
-
# return raw_img
|
80 |
-
# elif condition_type == "coloring":
|
81 |
-
# return raw_img.convert("L").convert("RGB")
|
82 |
-
# elif condition_type == "deblurring":
|
83 |
-
# condition_image = (
|
84 |
-
# raw_img.convert("RGB")
|
85 |
-
# .filter(ImageFilter.GaussianBlur(10))
|
86 |
-
# .convert("RGB")
|
87 |
-
# )
|
88 |
-
# return condition_image
|
89 |
-
# elif condition_type == "fill":
|
90 |
-
# return raw_img.convert("RGB")
|
91 |
-
# return self.condition
|
92 |
-
|
93 |
-
# @property
|
94 |
-
# def type_id(self) -> int:
|
95 |
-
# """
|
96 |
-
# Returns the type id of the condition.
|
97 |
-
# """
|
98 |
-
# return condition_dict[self.condition_type]
|
99 |
-
|
100 |
-
# @classmethod
|
101 |
-
# def get_type_id(cls, condition_type: str) -> int:
|
102 |
-
# """
|
103 |
-
# Returns the type id of the condition.
|
104 |
-
# """
|
105 |
-
# return condition_dict[condition_type]
|
106 |
-
|
107 |
-
# def encode(self, pipe: FluxPipeline) -> Tuple[torch.Tensor, torch.Tensor, int]:
|
108 |
-
# """
|
109 |
-
# Encodes the condition into tokens, ids and type_id.
|
110 |
-
# """
|
111 |
-
# if self.condition_type in [
|
112 |
-
# "depth",
|
113 |
-
# "canny",
|
114 |
-
# "subject",
|
115 |
-
# "coloring",
|
116 |
-
# "deblurring",
|
117 |
-
# "depth_pred",
|
118 |
-
# "fill",
|
119 |
-
# "sr",
|
120 |
-
# ]:
|
121 |
-
# tokens, ids = encode_vae_images(pipe, self.condition)
|
122 |
-
# else:
|
123 |
-
# raise NotImplementedError(
|
124 |
-
# f"Condition type {self.condition_type} not implemented"
|
125 |
-
# )
|
126 |
-
# if self.position_delta is None and self.condition_type == "subject":
|
127 |
-
# self.position_delta = [0, -self.condition.size[0] // 16]
|
128 |
-
# if self.position_delta is not None:
|
129 |
-
# ids[:, 1] += self.position_delta[0]
|
130 |
-
# ids[:, 2] += self.position_delta[1]
|
131 |
-
# print(f"[Condition.encode] position_delta={self.position_delta}")
|
132 |
-
# type_id = torch.ones_like(ids[:, :1]) * self.type_id
|
133 |
-
# return tokens, ids, type_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/generate.py
DELETED
@@ -1,838 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import torch
|
17 |
-
import yaml, os
|
18 |
-
from PIL import Image
|
19 |
-
from diffusers.pipelines import FluxPipeline
|
20 |
-
from typing import List, Union, Optional, Dict, Any, Callable
|
21 |
-
from src.flux.transformer import tranformer_forward
|
22 |
-
import src.flux.condition
|
23 |
-
|
24 |
-
# # from diffusers.pipelines.flux.pipeline_flux import (
|
25 |
-
# # FluxPipelineOutput,
|
26 |
-
# # calculate_shift,
|
27 |
-
# # retrieve_timesteps,
|
28 |
-
# # np,
|
29 |
-
# # )
|
30 |
-
# from src.flux.pipeline_tools import (
|
31 |
-
# encode_prompt_with_clip_t5, tokenize_t5_prompt, clear_attn_maps, encode_vae_images
|
32 |
-
# )
|
33 |
-
|
34 |
-
# from src.flux.pipeline_tools import CustomFluxPipeline, load_modulation_adapter, decode_vae_images, \
|
35 |
-
# save_attention_maps, gather_attn_maps, clear_attn_maps, load_dit_lora, quantization
|
36 |
-
|
37 |
-
# from src.utils.data_utils import pad_to_square, pad_to_target, pil2tensor, get_closest_ratio, get_aspect_ratios
|
38 |
-
# from src.utils.modulation_utils import get_word_index, unpad_input_ids
|
39 |
-
|
40 |
-
# def get_config(config_path: str = None):
|
41 |
-
# config_path = config_path or os.environ.get("XFL_CONFIG")
|
42 |
-
# if not config_path:
|
43 |
-
# return {}
|
44 |
-
# with open(config_path, "r") as f:
|
45 |
-
# config = yaml.safe_load(f)
|
46 |
-
# return config
|
47 |
-
|
48 |
-
|
49 |
-
# def prepare_params(
|
50 |
-
# prompt: Union[str, List[str]] = None,
|
51 |
-
# prompt_2: Optional[Union[str, List[str]]] = None,
|
52 |
-
# height: Optional[int] = 512,
|
53 |
-
# width: Optional[int] = 512,
|
54 |
-
# num_inference_steps: int = 28,
|
55 |
-
# timesteps: List[int] = None,
|
56 |
-
# guidance_scale: float = 3.5,
|
57 |
-
# num_images_per_prompt: Optional[int] = 1,
|
58 |
-
# generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
59 |
-
# latents: Optional[torch.FloatTensor] = None,
|
60 |
-
# prompt_embeds: Optional[torch.FloatTensor] = None,
|
61 |
-
# pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
62 |
-
# output_type: Optional[str] = "pil",
|
63 |
-
# return_dict: bool = True,
|
64 |
-
# joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
65 |
-
# callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
66 |
-
# callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
67 |
-
# max_sequence_length: int = 512,
|
68 |
-
# verbose: bool = False,
|
69 |
-
# **kwargs: dict,
|
70 |
-
# ):
|
71 |
-
# return (
|
72 |
-
# prompt,
|
73 |
-
# prompt_2,
|
74 |
-
# height,
|
75 |
-
# width,
|
76 |
-
# num_inference_steps,
|
77 |
-
# timesteps,
|
78 |
-
# guidance_scale,
|
79 |
-
# num_images_per_prompt,
|
80 |
-
# generator,
|
81 |
-
# latents,
|
82 |
-
# prompt_embeds,
|
83 |
-
# pooled_prompt_embeds,
|
84 |
-
# output_type,
|
85 |
-
# return_dict,
|
86 |
-
# joint_attention_kwargs,
|
87 |
-
# callback_on_step_end,
|
88 |
-
# callback_on_step_end_tensor_inputs,
|
89 |
-
# max_sequence_length,
|
90 |
-
# verbose,
|
91 |
-
# )
|
92 |
-
|
93 |
-
|
94 |
-
# def seed_everything(seed: int = 42):
|
95 |
-
# torch.backends.cudnn.deterministic = True
|
96 |
-
# torch.manual_seed(seed)
|
97 |
-
# np.random.seed(seed)
|
98 |
-
|
99 |
-
|
100 |
-
# @torch.no_grad()
|
101 |
-
# def generate(
|
102 |
-
# pipeline: FluxPipeline,
|
103 |
-
# vae_conditions: List[Condition] = None,
|
104 |
-
# config_path: str = None,
|
105 |
-
# model_config: Optional[Dict[str, Any]] = {},
|
106 |
-
# vae_condition_scale: float = 1.0,
|
107 |
-
# default_lora: bool = False,
|
108 |
-
# condition_pad_to: str = "square",
|
109 |
-
# condition_size: int = 512,
|
110 |
-
# text_cond_mask: Optional[torch.FloatTensor] = None,
|
111 |
-
# delta_emb: Optional[torch.FloatTensor] = None,
|
112 |
-
# delta_emb_pblock: Optional[torch.FloatTensor] = None,
|
113 |
-
# delta_emb_mask: Optional[torch.FloatTensor] = None,
|
114 |
-
# delta_start_ends = None,
|
115 |
-
# condition_latents = None,
|
116 |
-
# condition_ids = None,
|
117 |
-
# mod_adapter = None,
|
118 |
-
# store_attn_map: bool = False,
|
119 |
-
# vae_skip_iter: str = None,
|
120 |
-
# control_weight_lambda: str = None,
|
121 |
-
# double_attention: bool = False,
|
122 |
-
# single_attention: bool = False,
|
123 |
-
# ip_scale: str = None,
|
124 |
-
# use_latent_sblora_control: bool = False,
|
125 |
-
# latent_sblora_scale: str = None,
|
126 |
-
# use_condition_sblora_control: bool = False,
|
127 |
-
# condition_sblora_scale: str = None,
|
128 |
-
# idips = None,
|
129 |
-
# **params: dict,
|
130 |
-
# ):
|
131 |
-
# model_config = model_config or get_config(config_path).get("model", {})
|
132 |
-
|
133 |
-
# vae_skip_iter = model_config.get("vae_skip_iter", vae_skip_iter)
|
134 |
-
# double_attention = model_config.get("double_attention", double_attention)
|
135 |
-
# single_attention = model_config.get("single_attention", single_attention)
|
136 |
-
# control_weight_lambda = model_config.get("control_weight_lambda", control_weight_lambda)
|
137 |
-
# ip_scale = model_config.get("ip_scale", ip_scale)
|
138 |
-
# use_latent_sblora_control = model_config.get("use_latent_sblora_control", use_latent_sblora_control)
|
139 |
-
# use_condition_sblora_control = model_config.get("use_condition_sblora_control", use_condition_sblora_control)
|
140 |
-
|
141 |
-
# latent_sblora_scale = model_config.get("latent_sblora_scale", latent_sblora_scale)
|
142 |
-
# condition_sblora_scale = model_config.get("condition_sblora_scale", condition_sblora_scale)
|
143 |
-
|
144 |
-
# model_config["use_attention_double"] = False
|
145 |
-
# model_config["use_attention_single"] = False
|
146 |
-
# use_attention = False
|
147 |
-
|
148 |
-
# if idips is not None:
|
149 |
-
# if control_weight_lambda != "no":
|
150 |
-
# parts = control_weight_lambda.split(',')
|
151 |
-
# new_parts = []
|
152 |
-
# for part in parts:
|
153 |
-
# if ':' in part:
|
154 |
-
# left, right = part.split(':')
|
155 |
-
# values = right.split('/')
|
156 |
-
# # 保存整体值
|
157 |
-
# global_value = values[0]
|
158 |
-
# id_value = values[1]
|
159 |
-
# ip_value = values[2]
|
160 |
-
# new_values = [global_value]
|
161 |
-
# for is_id in idips:
|
162 |
-
# if is_id:
|
163 |
-
# new_values.append(id_value)
|
164 |
-
# else:
|
165 |
-
# new_values.append(ip_value)
|
166 |
-
# new_part = f"{left}:{('/'.join(new_values))}"
|
167 |
-
# new_parts.append(new_part)
|
168 |
-
# else:
|
169 |
-
# new_parts.append(part)
|
170 |
-
# control_weight_lambda = ','.join(new_parts)
|
171 |
-
|
172 |
-
# if vae_condition_scale != 1:
|
173 |
-
# for name, module in pipeline.transformer.named_modules():
|
174 |
-
# if not name.endswith(".attn"):
|
175 |
-
# continue
|
176 |
-
# module.c_factor = torch.ones(1, 1) * vae_condition_scale
|
177 |
-
|
178 |
-
# self = pipeline
|
179 |
-
# (
|
180 |
-
# prompt,
|
181 |
-
# prompt_2,
|
182 |
-
# height,
|
183 |
-
# width,
|
184 |
-
# num_inference_steps,
|
185 |
-
# timesteps,
|
186 |
-
# guidance_scale,
|
187 |
-
# num_images_per_prompt,
|
188 |
-
# generator,
|
189 |
-
# latents,
|
190 |
-
# prompt_embeds,
|
191 |
-
# pooled_prompt_embeds,
|
192 |
-
# output_type,
|
193 |
-
# return_dict,
|
194 |
-
# joint_attention_kwargs,
|
195 |
-
# callback_on_step_end,
|
196 |
-
# callback_on_step_end_tensor_inputs,
|
197 |
-
# max_sequence_length,
|
198 |
-
# verbose,
|
199 |
-
# ) = prepare_params(**params)
|
200 |
-
|
201 |
-
# height = height or self.default_sample_size * self.vae_scale_factor
|
202 |
-
# width = width or self.default_sample_size * self.vae_scale_factor
|
203 |
-
|
204 |
-
# # 1. Check inputs. Raise error if not correct
|
205 |
-
# self.check_inputs(
|
206 |
-
# prompt,
|
207 |
-
# prompt_2,
|
208 |
-
# height,
|
209 |
-
# width,
|
210 |
-
# prompt_embeds=prompt_embeds,
|
211 |
-
# pooled_prompt_embeds=pooled_prompt_embeds,
|
212 |
-
# callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
213 |
-
# max_sequence_length=max_sequence_length,
|
214 |
-
# )
|
215 |
-
|
216 |
-
# self._guidance_scale = guidance_scale
|
217 |
-
# self._joint_attention_kwargs = joint_attention_kwargs
|
218 |
-
# self._interrupt = False
|
219 |
-
|
220 |
-
# # 2. Define call parameters
|
221 |
-
# if prompt is not None and isinstance(prompt, str):
|
222 |
-
# batch_size = 1
|
223 |
-
# elif prompt is not None and isinstance(prompt, list):
|
224 |
-
# batch_size = len(prompt)
|
225 |
-
# else:
|
226 |
-
# batch_size = prompt_embeds.shape[0]
|
227 |
-
|
228 |
-
# device = self._execution_device
|
229 |
-
|
230 |
-
# lora_scale = (
|
231 |
-
# self.joint_attention_kwargs.get("scale", None)
|
232 |
-
# if self.joint_attention_kwargs is not None
|
233 |
-
# else None
|
234 |
-
# )
|
235 |
-
# (
|
236 |
-
# t5_prompt_embeds,
|
237 |
-
# pooled_prompt_embeds,
|
238 |
-
# text_ids,
|
239 |
-
# ) = encode_prompt_with_clip_t5(
|
240 |
-
# self=self,
|
241 |
-
# prompt="" if self.text_encoder_2 is None else prompt,
|
242 |
-
# prompt_2=None,
|
243 |
-
# prompt_embeds=prompt_embeds,
|
244 |
-
# pooled_prompt_embeds=pooled_prompt_embeds,
|
245 |
-
# device=device,
|
246 |
-
# num_images_per_prompt=num_images_per_prompt,
|
247 |
-
# max_sequence_length=max_sequence_length,
|
248 |
-
# lora_scale=lora_scale,
|
249 |
-
# )
|
250 |
-
|
251 |
-
# # 4. Prepare latent variables
|
252 |
-
# num_channels_latents = self.transformer.config.in_channels // 4
|
253 |
-
# latents, latent_image_ids = self.prepare_latents(
|
254 |
-
# batch_size * num_images_per_prompt,
|
255 |
-
# num_channels_latents,
|
256 |
-
# height,
|
257 |
-
# width,
|
258 |
-
# pooled_prompt_embeds.dtype,
|
259 |
-
# device,
|
260 |
-
# generator,
|
261 |
-
# latents,
|
262 |
-
# )
|
263 |
-
|
264 |
-
# latent_height = height // 16
|
265 |
-
|
266 |
-
# # 5. Prepare timesteps
|
267 |
-
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
268 |
-
# image_seq_len = latents.shape[1]
|
269 |
-
# mu = calculate_shift(
|
270 |
-
# image_seq_len,
|
271 |
-
# self.scheduler.config.base_image_seq_len,
|
272 |
-
# self.scheduler.config.max_image_seq_len,
|
273 |
-
# self.scheduler.config.base_shift,
|
274 |
-
# self.scheduler.config.max_shift,
|
275 |
-
# )
|
276 |
-
# timesteps, num_inference_steps = retrieve_timesteps(
|
277 |
-
# self.scheduler,
|
278 |
-
# num_inference_steps,
|
279 |
-
# device,
|
280 |
-
# timesteps,
|
281 |
-
# sigmas,
|
282 |
-
# mu=mu,
|
283 |
-
# )
|
284 |
-
# num_warmup_steps = max(
|
285 |
-
# len(timesteps) - num_inference_steps * self.scheduler.order, 0
|
286 |
-
# )
|
287 |
-
# self._num_timesteps = len(timesteps)
|
288 |
-
|
289 |
-
# attn_map = None
|
290 |
-
|
291 |
-
# # 6. Denoising loop
|
292 |
-
# with self.progress_bar(total=num_inference_steps) as progress_bar:
|
293 |
-
# totalsteps = timesteps[0]
|
294 |
-
# if control_weight_lambda is not None:
|
295 |
-
# print("control_weight_lambda", control_weight_lambda)
|
296 |
-
# control_weight_lambda_schedule = []
|
297 |
-
# for scale_str in control_weight_lambda.split(','):
|
298 |
-
# time_region, scale = scale_str.split(':')
|
299 |
-
# start, end = time_region.split('-')
|
300 |
-
# scales = [float(s) for s in scale.split('/')]
|
301 |
-
# control_weight_lambda_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, scales])
|
302 |
-
|
303 |
-
# if ip_scale is not None:
|
304 |
-
# print("ip_scale", ip_scale)
|
305 |
-
# ip_scale_schedule = []
|
306 |
-
# for scale_str in ip_scale.split(','):
|
307 |
-
# time_region, scale = scale_str.split(':')
|
308 |
-
# start, end = time_region.split('-')
|
309 |
-
# ip_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
310 |
-
|
311 |
-
# if use_latent_sblora_control:
|
312 |
-
# if latent_sblora_scale is not None:
|
313 |
-
# print("latent_sblora_scale", latent_sblora_scale)
|
314 |
-
# latent_sblora_scale_schedule = []
|
315 |
-
# for scale_str in latent_sblora_scale.split(','):
|
316 |
-
# time_region, scale = scale_str.split(':')
|
317 |
-
# start, end = time_region.split('-')
|
318 |
-
# latent_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
319 |
-
|
320 |
-
# if use_condition_sblora_control:
|
321 |
-
# if condition_sblora_scale is not None:
|
322 |
-
# print("condition_sblora_scale", condition_sblora_scale)
|
323 |
-
# condition_sblora_scale_schedule = []
|
324 |
-
# for scale_str in condition_sblora_scale.split(','):
|
325 |
-
# time_region, scale = scale_str.split(':')
|
326 |
-
# start, end = time_region.split('-')
|
327 |
-
# condition_sblora_scale_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
328 |
-
|
329 |
-
|
330 |
-
# if vae_skip_iter is not None:
|
331 |
-
# print("vae_skip_iter", vae_skip_iter)
|
332 |
-
# vae_skip_iter_schedule = []
|
333 |
-
# for scale_str in vae_skip_iter.split(','):
|
334 |
-
# time_region, scale = scale_str.split(':')
|
335 |
-
# start, end = time_region.split('-')
|
336 |
-
# vae_skip_iter_schedule.append([(1-float(start))*totalsteps, (1-float(end))*totalsteps, float(scale)])
|
337 |
-
|
338 |
-
# if control_weight_lambda is not None and attn_map is None:
|
339 |
-
# batch_size = latents.shape[0]
|
340 |
-
# latent_width = latents.shape[1]//latent_height
|
341 |
-
# attn_map = torch.ones(batch_size, latent_height, latent_width, 128, device=latents.device, dtype=torch.bfloat16)
|
342 |
-
# print("contol_weight_only", attn_map.shape)
|
343 |
-
|
344 |
-
# self.scheduler.set_begin_index(0)
|
345 |
-
# self.scheduler._init_step_index(0)
|
346 |
-
# for i, t in enumerate(timesteps):
|
347 |
-
|
348 |
-
# if control_weight_lambda is not None:
|
349 |
-
# cur_control_weight_lambda = []
|
350 |
-
# for start, end, scale in control_weight_lambda_schedule:
|
351 |
-
# if t <= start and t >= end:
|
352 |
-
# cur_control_weight_lambda = scale
|
353 |
-
# break
|
354 |
-
# print(f"timestep:{t}, cur_control_weight_lambda:{cur_control_weight_lambda}")
|
355 |
-
|
356 |
-
# if cur_control_weight_lambda:
|
357 |
-
# model_config["use_attention_single"] = True
|
358 |
-
# use_attention = True
|
359 |
-
# model_config["use_atten_lambda"] = cur_control_weight_lambda
|
360 |
-
# else:
|
361 |
-
# model_config["use_attention_single"] = False
|
362 |
-
# use_attention = False
|
363 |
-
|
364 |
-
# if self.interrupt:
|
365 |
-
# continue
|
366 |
-
|
367 |
-
# if isinstance(delta_emb, list):
|
368 |
-
# cur_delta_emb = delta_emb[i]
|
369 |
-
# cur_delta_emb_pblock = delta_emb_pblock[i]
|
370 |
-
# cur_delta_emb_mask = delta_emb_mask[i]
|
371 |
-
# else:
|
372 |
-
# cur_delta_emb = delta_emb
|
373 |
-
# cur_delta_emb_pblock = delta_emb_pblock
|
374 |
-
# cur_delta_emb_mask = delta_emb_mask
|
375 |
-
|
376 |
-
|
377 |
-
# # broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
378 |
-
# timestep = t.expand(latents.shape[0]).to(latents.dtype) / 1000
|
379 |
-
# prompt_embeds = t5_prompt_embeds
|
380 |
-
# text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=prompt_embeds.dtype)
|
381 |
-
|
382 |
-
# # handle guidance
|
383 |
-
# if self.transformer.config.guidance_embeds:
|
384 |
-
# guidance = torch.tensor([guidance_scale], device=device)
|
385 |
-
# guidance = guidance.expand(latents.shape[0])
|
386 |
-
# else:
|
387 |
-
# guidance = None
|
388 |
-
# self.transformer.enable_lora()
|
389 |
-
|
390 |
-
# lora_weight = 1
|
391 |
-
# if ip_scale is not None:
|
392 |
-
# lora_weight = 0
|
393 |
-
# for start, end, scale in ip_scale_schedule:
|
394 |
-
# if t <= start and t >= end:
|
395 |
-
# lora_weight = scale
|
396 |
-
# break
|
397 |
-
# if lora_weight != 1: print(f"timestep:{t}, lora_weights:{lora_weight}")
|
398 |
-
|
399 |
-
# latent_sblora_weight = None
|
400 |
-
# if use_latent_sblora_control:
|
401 |
-
# if latent_sblora_scale is not None:
|
402 |
-
# latent_sblora_weight = 0
|
403 |
-
# for start, end, scale in latent_sblora_scale_schedule:
|
404 |
-
# if t <= start and t >= end:
|
405 |
-
# latent_sblora_weight = scale
|
406 |
-
# break
|
407 |
-
# if latent_sblora_weight != 1: print(f"timestep:{t}, latent_sblora_weight:{latent_sblora_weight}")
|
408 |
-
|
409 |
-
# condition_sblora_weight = None
|
410 |
-
# if use_condition_sblora_control:
|
411 |
-
# if condition_sblora_scale is not None:
|
412 |
-
# condition_sblora_weight = 0
|
413 |
-
# for start, end, scale in condition_sblora_scale_schedule:
|
414 |
-
# if t <= start and t >= end:
|
415 |
-
# condition_sblora_weight = scale
|
416 |
-
# break
|
417 |
-
# if condition_sblora_weight !=1: print(f"timestep:{t}, condition_sblora_weight:{condition_sblora_weight}")
|
418 |
-
|
419 |
-
# vae_skip_iter_t = False
|
420 |
-
# if vae_skip_iter is not None:
|
421 |
-
# for start, end, scale in vae_skip_iter_schedule:
|
422 |
-
# if t <= start and t >= end:
|
423 |
-
# vae_skip_iter_t = bool(scale)
|
424 |
-
# break
|
425 |
-
# if vae_skip_iter_t:
|
426 |
-
# print(f"timestep:{t}, skip vae:{vae_skip_iter_t}")
|
427 |
-
|
428 |
-
# noise_pred = tranformer_forward(
|
429 |
-
# self.transformer,
|
430 |
-
# model_config=model_config,
|
431 |
-
# # Inputs of the condition (new feature)
|
432 |
-
# text_cond_mask=text_cond_mask,
|
433 |
-
# delta_emb=cur_delta_emb,
|
434 |
-
# delta_emb_pblock=cur_delta_emb_pblock,
|
435 |
-
# delta_emb_mask=cur_delta_emb_mask,
|
436 |
-
# delta_start_ends=delta_start_ends,
|
437 |
-
# condition_latents=None if vae_skip_iter_t else condition_latents,
|
438 |
-
# condition_ids=None if vae_skip_iter_t else condition_ids,
|
439 |
-
# condition_type_ids=None,
|
440 |
-
# # Inputs to the original transformer
|
441 |
-
# hidden_states=latents,
|
442 |
-
# # YiYi notes: divide it by 1000 for now because we scale it by 1000 in the transforme rmodel (we should not keep it but I want to keep the inputs same for the model for testing)
|
443 |
-
# timestep=timestep,
|
444 |
-
# guidance=guidance,
|
445 |
-
# pooled_projections=pooled_prompt_embeds,
|
446 |
-
# encoder_hidden_states=prompt_embeds,
|
447 |
-
# txt_ids=text_ids,
|
448 |
-
# img_ids=latent_image_ids,
|
449 |
-
# joint_attention_kwargs={'scale': lora_weight, "latent_sblora_weight": latent_sblora_weight, "condition_sblora_weight": condition_sblora_weight},
|
450 |
-
# store_attn_map=use_attention,
|
451 |
-
# last_attn_map=attn_map if cur_control_weight_lambda else None,
|
452 |
-
# use_text_mod=model_config["modulation"]["use_text_mod"],
|
453 |
-
# use_img_mod=model_config["modulation"]["use_img_mod"],
|
454 |
-
# mod_adapter=mod_adapter,
|
455 |
-
# latent_height=latent_height,
|
456 |
-
# return_dict=False,
|
457 |
-
# )[0]
|
458 |
-
|
459 |
-
# if use_attention:
|
460 |
-
# attn_maps, _ = gather_attn_maps(self.transformer, clear=True)
|
461 |
-
|
462 |
-
# # compute the previous noisy sample x_t -> x_t-1
|
463 |
-
# latents_dtype = latents.dtype
|
464 |
-
# latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
465 |
-
|
466 |
-
# if latents.dtype != latents_dtype:
|
467 |
-
# if torch.backends.mps.is_available():
|
468 |
-
# # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272
|
469 |
-
# latents = latents.to(latents_dtype)
|
470 |
-
|
471 |
-
# if callback_on_step_end is not None:
|
472 |
-
# callback_kwargs = {}
|
473 |
-
# for k in callback_on_step_end_tensor_inputs:
|
474 |
-
# callback_kwargs[k] = locals()[k]
|
475 |
-
# callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
476 |
-
|
477 |
-
# latents = callback_outputs.pop("latents", latents)
|
478 |
-
# prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
479 |
-
|
480 |
-
# # call the callback, if provided
|
481 |
-
# if i == len(timesteps) - 1 or (
|
482 |
-
# (i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0
|
483 |
-
# ):
|
484 |
-
# progress_bar.update()
|
485 |
-
|
486 |
-
# if output_type == "latent":
|
487 |
-
# image = latents
|
488 |
-
|
489 |
-
# else:
|
490 |
-
# latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
|
491 |
-
# latents = (
|
492 |
-
# latents / self.vae.config.scaling_factor
|
493 |
-
# ) + self.vae.config.shift_factor
|
494 |
-
# image = self.vae.decode(latents, return_dict=False)[0]
|
495 |
-
# image = self.image_processor.postprocess(image, output_type=output_type)
|
496 |
-
|
497 |
-
# # Offload all models
|
498 |
-
# self.maybe_free_model_hooks()
|
499 |
-
|
500 |
-
# self.transformer.enable_lora()
|
501 |
-
|
502 |
-
# if vae_condition_scale != 1:
|
503 |
-
# for name, module in pipeline.transformer.named_modules():
|
504 |
-
# if not name.endswith(".attn"):
|
505 |
-
# continue
|
506 |
-
# del module.c_factor
|
507 |
-
|
508 |
-
# if not return_dict:
|
509 |
-
# return (image,)
|
510 |
-
|
511 |
-
# return FluxPipelineOutput(images=image)
|
512 |
-
|
513 |
-
|
514 |
-
# @torch.no_grad()
|
515 |
-
# def generate_from_test_sample(
|
516 |
-
# test_sample, pipe, config,
|
517 |
-
# num_images=1,
|
518 |
-
# vae_skip_iter: str = None,
|
519 |
-
# target_height: int = None,
|
520 |
-
# target_width: int = None,
|
521 |
-
# seed: int = 42,
|
522 |
-
# control_weight_lambda: str = None,
|
523 |
-
# double_attention: bool = False,
|
524 |
-
# single_attention: bool = False,
|
525 |
-
# ip_scale: str = None,
|
526 |
-
# use_latent_sblora_control: bool = False,
|
527 |
-
# latent_sblora_scale: str = None,
|
528 |
-
# use_condition_sblora_control: bool = False,
|
529 |
-
# condition_sblora_scale: str = None,
|
530 |
-
# use_idip = False,
|
531 |
-
# **kargs
|
532 |
-
# ):
|
533 |
-
# target_size = config["train"]["dataset"]["val_target_size"]
|
534 |
-
# condition_size = config["train"]["dataset"].get("val_condition_size", target_size//2)
|
535 |
-
# condition_pad_to = config["train"]["dataset"]["condition_pad_to"]
|
536 |
-
# pos_offset_type = config["model"].get("pos_offset_type", "width")
|
537 |
-
# seed = config["model"].get("seed", seed)
|
538 |
-
|
539 |
-
# device = pipe._execution_device
|
540 |
-
|
541 |
-
# condition_imgs = test_sample['input_images']
|
542 |
-
# position_delta = test_sample['position_delta']
|
543 |
-
# prompt = test_sample['prompt']
|
544 |
-
# original_image = test_sample.get('original_image', None)
|
545 |
-
# condition_type = test_sample.get('condition_type', "subject")
|
546 |
-
# modulation_input = test_sample.get('modulation', None)
|
547 |
-
|
548 |
-
# delta_start_ends = None
|
549 |
-
# condition_latents = condition_ids = None
|
550 |
-
# text_cond_mask = None
|
551 |
-
|
552 |
-
# delta_embs = None
|
553 |
-
# delta_embs_pblock = None
|
554 |
-
# delta_embs_mask = None
|
555 |
-
|
556 |
-
# try:
|
557 |
-
# max_length = config["model"]["modulation"]["max_text_len"]
|
558 |
-
# except Exception as e:
|
559 |
-
# print(e)
|
560 |
-
# max_length = 512
|
561 |
-
|
562 |
-
# if modulation_input is None or len(modulation_input) == 0:
|
563 |
-
# delta_emb = delta_emb_pblock = delta_emb_mask = None
|
564 |
-
# else:
|
565 |
-
# dtype = torch.bfloat16
|
566 |
-
# batch_size = 1
|
567 |
-
# N = config["model"]["modulation"].get("per_block_adapter_single_blocks", 0) + 19
|
568 |
-
# guidance = torch.tensor([3.5]).to(device).expand(batch_size)
|
569 |
-
# out_dim = config["model"]["modulation"]["out_dim"]
|
570 |
-
|
571 |
-
# tar_text_inputs = tokenize_t5_prompt(pipe, prompt, max_length)
|
572 |
-
# tar_padding_mask = tar_text_inputs.attention_mask.to(device).bool()
|
573 |
-
# tar_tokens = tar_text_inputs.input_ids.to(device)
|
574 |
-
# if config["model"]["modulation"]["eos_exclude"]:
|
575 |
-
# tar_padding_mask[tar_tokens == 1] = False
|
576 |
-
|
577 |
-
# def get_start_end_by_pompt_matching(src_prompts, tar_prompts):
|
578 |
-
# text_cond_mask = torch.zeros(batch_size, max_length, device=device, dtype=torch.bool)
|
579 |
-
# tar_prompt_input_ids = tokenize_t5_prompt(pipe, tar_prompts, max_length).input_ids
|
580 |
-
# src_prompt_count = 1
|
581 |
-
# start_ends = []
|
582 |
-
# for i, (src_prompt, tar_prompt, tar_prompt_tokens) in enumerate(zip(src_prompts, tar_prompts, tar_prompt_input_ids)):
|
583 |
-
# try:
|
584 |
-
# tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_prompt_tokens, src_prompt, src_prompt_count, max_length, verbose=False)
|
585 |
-
# start_ends.append([tar_start, tar_end])
|
586 |
-
# text_cond_mask[i, tar_start:tar_end] = True
|
587 |
-
# except Exception as e:
|
588 |
-
# print(e)
|
589 |
-
# return start_ends, text_cond_mask
|
590 |
-
|
591 |
-
# def encode_mod_image(pil_images):
|
592 |
-
# if config["model"]["modulation"]["use_dit"]:
|
593 |
-
# raise NotImplementedError()
|
594 |
-
# else:
|
595 |
-
# pil_images = [pad_to_square(img).resize((224, 224)) for img in pil_images]
|
596 |
-
# if config["model"]["modulation"]["use_vae"]:
|
597 |
-
# raise NotImplementedError()
|
598 |
-
# else:
|
599 |
-
# clip_pixel_values = pipe.clip_processor(
|
600 |
-
# text=None, images=pil_images, do_resize=False, do_center_crop=False, return_tensors="pt",
|
601 |
-
# ).pixel_values.to(dtype=dtype, device=device)
|
602 |
-
# clip_outputs = pipe.clip_model(clip_pixel_values, output_hidden_states=True, interpolate_pos_encoding=True, return_dict=True)
|
603 |
-
# return clip_outputs
|
604 |
-
|
605 |
-
# def rgba_to_white_background(input_path, background=(255,255,255)):
|
606 |
-
# with Image.open(input_path).convert("RGBA") as img:
|
607 |
-
# img_np = np.array(img)
|
608 |
-
# alpha = img_np[:, :, 3] / 255.0 # 归一化Alpha通道[3](@ref)
|
609 |
-
# rgb = img_np[:, :, :3].astype(float) # 提取RGB通道
|
610 |
-
|
611 |
-
# background_np = np.full_like(rgb, background, dtype=float) # 根据参数生成背景[7](@ref)
|
612 |
-
|
613 |
-
# # 混合计算:前景色*alpha + 背景色*(1-alpha)
|
614 |
-
# result_np = rgb * alpha[..., np.newaxis] + \
|
615 |
-
# background_np * (1 - alpha[..., np.newaxis])
|
616 |
-
|
617 |
-
# result = Image.fromarray(result_np.astype(np.uint8), "RGB")
|
618 |
-
# return result
|
619 |
-
# def get_mod_emb(modulation_input, timestep):
|
620 |
-
# delta_emb = torch.zeros((batch_size, max_length, out_dim), dtype=dtype, device=device)
|
621 |
-
# delta_emb_pblock = torch.zeros((batch_size, max_length, N, out_dim), dtype=dtype, device=device)
|
622 |
-
# delta_emb_mask = torch.zeros((batch_size, max_length), dtype=torch.bool, device=device)
|
623 |
-
# delta_start_ends = None
|
624 |
-
# condition_latents = condition_ids = None
|
625 |
-
# text_cond_mask = None
|
626 |
-
|
627 |
-
# if modulation_input[0]["type"] == "adapter":
|
628 |
-
# num_inputs = len(modulation_input[0]["src_inputs"])
|
629 |
-
# src_prompts = [x["caption"] for x in modulation_input[0]["src_inputs"]]
|
630 |
-
# src_text_inputs = tokenize_t5_prompt(pipe, src_prompts, max_length)
|
631 |
-
# src_input_ids = unpad_input_ids(src_text_inputs.input_ids, src_text_inputs.attention_mask)
|
632 |
-
# tar_input_ids = unpad_input_ids(tar_text_inputs.input_ids, tar_text_inputs.attention_mask)
|
633 |
-
# src_prompt_embeds = pipe._get_t5_prompt_embeds(prompt=src_prompts, max_sequence_length=max_length, device=device) # (M, 512, 4096)
|
634 |
-
|
635 |
-
# pil_images = [rgba_to_white_background(x["image_path"]) for x in modulation_input[0]["src_inputs"]]
|
636 |
-
|
637 |
-
# src_ds_scales = [x.get("downsample_scale", 1.0) for x in modulation_input[0]["src_inputs"]]
|
638 |
-
# resized_pil_images = []
|
639 |
-
# for img, ds_scale in zip(pil_images, src_ds_scales):
|
640 |
-
# img = pad_to_square(img)
|
641 |
-
# if ds_scale < 1.0:
|
642 |
-
# assert ds_scale > 0
|
643 |
-
# img = img.resize((int(224 * ds_scale), int(224 * ds_scale))).resize((224, 224))
|
644 |
-
# resized_pil_images.append(img)
|
645 |
-
# pil_images = resized_pil_images
|
646 |
-
|
647 |
-
# img_encoded = encode_mod_image(pil_images)
|
648 |
-
# delta_start_ends = []
|
649 |
-
# text_cond_mask = torch.zeros(num_inputs, max_length, device=device, dtype=torch.bool)
|
650 |
-
# if config["model"]["modulation"]["pass_vae"]:
|
651 |
-
# pil_images = [pad_to_square(img).resize((condition_size, condition_size)) for img in pil_images]
|
652 |
-
# with torch.no_grad():
|
653 |
-
# batch_tensor = torch.stack([pil2tensor(x) for x in pil_images])
|
654 |
-
# x_0, img_ids = encode_vae_images(pipe, batch_tensor) # (N, 256, 64)
|
655 |
-
|
656 |
-
# condition_latents = x_0.clone().detach().reshape(1, -1, 64) # (1, N256, 64)
|
657 |
-
# condition_ids = img_ids.clone().detach()
|
658 |
-
# condition_ids = condition_ids.unsqueeze(0).repeat_interleave(num_inputs, dim=0) # (N, 256, 3)
|
659 |
-
# for i in range(num_inputs):
|
660 |
-
# condition_ids[i, :, 1] += 0 if pos_offset_type == "width" else -(batch_tensor.shape[-1]//16) * (i + 1)
|
661 |
-
# condition_ids[i, :, 2] += -(batch_tensor.shape[-1]//16) * (i + 1)
|
662 |
-
# condition_ids = condition_ids.reshape(-1, 3) # (N256, 3)
|
663 |
-
|
664 |
-
# if config["model"]["modulation"]["use_dit"]:
|
665 |
-
# raise NotImplementedError()
|
666 |
-
# else:
|
667 |
-
# src_delta_embs = [] # [(512, 3072)]
|
668 |
-
# src_delta_emb_pblock = []
|
669 |
-
# for i in range(num_inputs):
|
670 |
-
# if isinstance(img_encoded, dict):
|
671 |
-
# _src_clip_outputs = {}
|
672 |
-
# for key in img_encoded:
|
673 |
-
# if torch.is_tensor(img_encoded[key]):
|
674 |
-
# _src_clip_outputs[key] = img_encoded[key][i:i+1]
|
675 |
-
# else:
|
676 |
-
# _src_clip_outputs[key] = [x[i:i+1] for x in img_encoded[key]]
|
677 |
-
# _img_encoded = _src_clip_outputs
|
678 |
-
# else:
|
679 |
-
# _img_encoded = img_encoded[i:i+1]
|
680 |
-
|
681 |
-
# x1, x2 = pipe.modulation_adapters[0](timestep, src_prompt_embeds[i:i+1], _img_encoded)
|
682 |
-
# src_delta_embs.append(x1[0]) # (512, 3072)
|
683 |
-
# src_delta_emb_pblock.append(x2[0]) # (512, N, 3072)
|
684 |
-
|
685 |
-
# for input_args in modulation_input[0]["use_words"]:
|
686 |
-
# src_word_count = 1
|
687 |
-
# if len(input_args) == 3:
|
688 |
-
# src_input_index, src_word, tar_word = input_args
|
689 |
-
# tar_word_count = 1
|
690 |
-
# else:
|
691 |
-
# src_input_index, src_word, tar_word, tar_word_count = input_args[:4]
|
692 |
-
# src_prompt = src_prompts[src_input_index]
|
693 |
-
# tar_prompt = prompt
|
694 |
-
|
695 |
-
# src_start, src_end = get_word_index(pipe, src_prompt, src_input_ids[src_input_index], src_word, src_word_count, max_length, verbose=False)
|
696 |
-
# tar_start, tar_end = get_word_index(pipe, tar_prompt, tar_input_ids[0], tar_word, tar_word_count, max_length, verbose=False)
|
697 |
-
# if delta_emb is not None:
|
698 |
-
# delta_emb[:, tar_start:tar_end] = src_delta_embs[src_input_index][src_start:src_end] # (B, 512, 3072)
|
699 |
-
# if delta_emb_pblock is not None:
|
700 |
-
# delta_emb_pblock[:, tar_start:tar_end] = src_delta_emb_pblock[src_input_index][src_start:src_end] # (B, 512, N, 3072)
|
701 |
-
# delta_emb_mask[:, tar_start:tar_end] = True
|
702 |
-
# text_cond_mask[src_input_index, tar_start:tar_end] = True
|
703 |
-
# delta_start_ends.append([0, src_input_index, src_start, src_end, tar_start, tar_end])
|
704 |
-
# text_cond_mask = text_cond_mask.transpose(0, 1).unsqueeze(0)
|
705 |
-
|
706 |
-
# else:
|
707 |
-
# raise NotImplementedError()
|
708 |
-
# return delta_emb, delta_emb_pblock, delta_emb_mask, \
|
709 |
-
# text_cond_mask, delta_start_ends, condition_latents, condition_ids
|
710 |
-
|
711 |
-
# num_inference_steps = 28 # FIXME: harcoded here
|
712 |
-
# num_channels_latents = pipe.transformer.config.in_channels // 4
|
713 |
-
|
714 |
-
# # set timesteps
|
715 |
-
# sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
|
716 |
-
# mu = calculate_shift(
|
717 |
-
# num_channels_latents,
|
718 |
-
# pipe.scheduler.config.base_image_seq_len,
|
719 |
-
# pipe.scheduler.config.max_image_seq_len,
|
720 |
-
# pipe.scheduler.config.base_shift,
|
721 |
-
# pipe.scheduler.config.max_shift,
|
722 |
-
# )
|
723 |
-
# timesteps, num_inference_steps = retrieve_timesteps(
|
724 |
-
# pipe.scheduler,
|
725 |
-
# num_inference_steps,
|
726 |
-
# device,
|
727 |
-
# None,
|
728 |
-
# sigmas,
|
729 |
-
# mu=mu,
|
730 |
-
# )
|
731 |
-
|
732 |
-
# if modulation_input is not None:
|
733 |
-
# delta_embs = []
|
734 |
-
# delta_embs_pblock = []
|
735 |
-
# delta_embs_mask = []
|
736 |
-
# for i, t in enumerate(timesteps):
|
737 |
-
# t = t.expand(1).to(torch.bfloat16) / 1000
|
738 |
-
# (
|
739 |
-
# delta_emb, delta_emb_pblock, delta_emb_mask,
|
740 |
-
# text_cond_mask, delta_start_ends,
|
741 |
-
# condition_latents, condition_ids
|
742 |
-
# ) = get_mod_emb(modulation_input, t)
|
743 |
-
# delta_embs.append(delta_emb)
|
744 |
-
# delta_embs_pblock.append(delta_emb_pblock)
|
745 |
-
# delta_embs_mask.append(delta_emb_mask)
|
746 |
-
|
747 |
-
# if original_image is not None:
|
748 |
-
# raise NotImplementedError()
|
749 |
-
# (target_height, target_width), closest_ratio = get_closest_ratio(original_image.height, original_image.width, train_aspect_ratios)
|
750 |
-
# elif modulation_input is None or len(modulation_input) == 0:
|
751 |
-
# delta_emb = delta_emb_pblock = delta_emb_mask = None
|
752 |
-
# else:
|
753 |
-
# for i, t in enumerate(timesteps):
|
754 |
-
# t = t.expand(1).to(torch.bfloat16) / 1000
|
755 |
-
# (
|
756 |
-
# delta_emb, delta_emb_pblock, delta_emb_mask,
|
757 |
-
# text_cond_mask, delta_start_ends,
|
758 |
-
# condition_latents, condition_ids
|
759 |
-
# ) = get_mod_emb(modulation_input, t)
|
760 |
-
# delta_embs.append(delta_emb)
|
761 |
-
# delta_embs_pblock.append(delta_emb_pblock)
|
762 |
-
# delta_embs_mask.append(delta_emb_mask)
|
763 |
-
|
764 |
-
# if target_height is None or target_width is None:
|
765 |
-
# target_height = target_width = target_size
|
766 |
-
|
767 |
-
# if condition_pad_to == "square":
|
768 |
-
# condition_imgs = [pad_to_square(x) for x in condition_imgs]
|
769 |
-
# elif condition_pad_to == "target":
|
770 |
-
# condition_imgs = [pad_to_target(x, (target_size, target_size)) for x in condition_imgs]
|
771 |
-
# condition_imgs = [x.resize((condition_size, condition_size)).convert("RGB") for x in condition_imgs]
|
772 |
-
# # TODO: fix position_delta
|
773 |
-
# conditions = [
|
774 |
-
# Condition(
|
775 |
-
# condition_type=condition_type,
|
776 |
-
# condition=x,
|
777 |
-
# position_delta=position_delta,
|
778 |
-
# ) for x in condition_imgs
|
779 |
-
# ]
|
780 |
-
# # vlm_images = condition_imgs if config["model"]["use_vlm"] else []
|
781 |
-
|
782 |
-
# use_perblock_adapter = False
|
783 |
-
# try:
|
784 |
-
# if config["model"]["modulation"]["use_perblock_adapter"]:
|
785 |
-
# use_perblock_adapter = True
|
786 |
-
# except Exception as e:
|
787 |
-
# pass
|
788 |
-
|
789 |
-
# results = []
|
790 |
-
# for i in range(num_images):
|
791 |
-
# clear_attn_maps(pipe.transformer)
|
792 |
-
# generator = torch.Generator(device=device)
|
793 |
-
# generator.manual_seed(seed + i)
|
794 |
-
# if modulation_input is None or len(modulation_input) == 0:
|
795 |
-
# idips = None
|
796 |
-
# else:
|
797 |
-
# idips = ["human" in p["image_path"] for p in modulation_input[0]["src_inputs"]]
|
798 |
-
# if len(modulation_input[0]["use_words"][0])==5:
|
799 |
-
# print("use idips in use_words")
|
800 |
-
# idips = [x[-1] for x in modulation_input[0]["use_words"]]
|
801 |
-
# result_img = generate(
|
802 |
-
# pipe,
|
803 |
-
# prompt=prompt,
|
804 |
-
# max_sequence_length=max_length,
|
805 |
-
# vae_conditions=conditions,
|
806 |
-
# generator=generator,
|
807 |
-
# model_config=config["model"],
|
808 |
-
# height=target_height,
|
809 |
-
# width=target_width,
|
810 |
-
# condition_pad_to=condition_pad_to,
|
811 |
-
# condition_size=condition_size,
|
812 |
-
# text_cond_mask=text_cond_mask,
|
813 |
-
# delta_emb=delta_embs,
|
814 |
-
# delta_emb_pblock=delta_embs_pblock if use_perblock_adapter else None,
|
815 |
-
# delta_emb_mask=delta_embs_mask,
|
816 |
-
# delta_start_ends=delta_start_ends,
|
817 |
-
# condition_latents=condition_latents,
|
818 |
-
# condition_ids=condition_ids,
|
819 |
-
# mod_adapter=pipe.modulation_adapters[0] if config["model"]["modulation"]["use_dit"] else None,
|
820 |
-
# vae_skip_iter=vae_skip_iter,
|
821 |
-
# control_weight_lambda=control_weight_lambda,
|
822 |
-
# double_attention=double_attention,
|
823 |
-
# single_attention=single_attention,
|
824 |
-
# ip_scale=ip_scale,
|
825 |
-
# use_latent_sblora_control=use_latent_sblora_control,
|
826 |
-
# latent_sblora_scale=latent_sblora_scale,
|
827 |
-
# use_condition_sblora_control=use_condition_sblora_control,
|
828 |
-
# condition_sblora_scale=condition_sblora_scale,
|
829 |
-
# idips=idips if use_idip else None,
|
830 |
-
# **kargs,
|
831 |
-
# ).images[0]
|
832 |
-
|
833 |
-
# final_image = result_img
|
834 |
-
# results.append(final_image)
|
835 |
-
|
836 |
-
# if num_images == 1:
|
837 |
-
# return results[0]
|
838 |
-
# return results
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/lora_controller.py
DELETED
@@ -1,99 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
from peft.tuners.tuners_utils import BaseTunerLayer
|
17 |
-
from typing import List, Any, Optional, Type
|
18 |
-
|
19 |
-
|
20 |
-
class enable_lora:
|
21 |
-
def __init__(self, lora_modules: List[BaseTunerLayer], dit_activated: bool, cond_activated: bool=False, latent_sblora_weight: float=None, condition_sblora_weight: float=None) -> None:
|
22 |
-
self.dit_activated = dit_activated
|
23 |
-
self.cond_activated = cond_activated
|
24 |
-
self.latent_sblora_weight = latent_sblora_weight
|
25 |
-
self.condition_sblora_weight = condition_sblora_weight
|
26 |
-
# assert not (dit_activated and cond_activated)
|
27 |
-
|
28 |
-
self.lora_modules: List[BaseTunerLayer] = [
|
29 |
-
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
30 |
-
]
|
31 |
-
|
32 |
-
self.scales = [
|
33 |
-
{
|
34 |
-
active_adapter: lora_module.scaling[active_adapter] if active_adapter in lora_module.scaling else 1
|
35 |
-
for active_adapter in lora_module.active_adapters
|
36 |
-
} for lora_module in self.lora_modules
|
37 |
-
]
|
38 |
-
|
39 |
-
|
40 |
-
def __enter__(self) -> None:
|
41 |
-
for i, lora_module in enumerate(self.lora_modules):
|
42 |
-
if not isinstance(lora_module, BaseTunerLayer):
|
43 |
-
continue
|
44 |
-
for active_adapter in lora_module.active_adapters:
|
45 |
-
if active_adapter == "default":
|
46 |
-
if self.dit_activated:
|
47 |
-
lora_module.scaling[active_adapter] = self.scales[0]["default"] if self.latent_sblora_weight is None else self.latent_sblora_weight
|
48 |
-
else:
|
49 |
-
lora_module.scaling[active_adapter] = 0
|
50 |
-
else:
|
51 |
-
assert active_adapter == "condition"
|
52 |
-
if self.cond_activated:
|
53 |
-
lora_module.scaling[active_adapter] = self.scales[0]["condition"] if self.condition_sblora_weight is None else self.condition_sblora_weight
|
54 |
-
else:
|
55 |
-
lora_module.scaling[active_adapter] = 0
|
56 |
-
|
57 |
-
def __exit__(
|
58 |
-
self,
|
59 |
-
exc_type: Optional[Type[BaseException]],
|
60 |
-
exc_val: Optional[BaseException],
|
61 |
-
exc_tb: Optional[Any],
|
62 |
-
) -> None:
|
63 |
-
for i, lora_module in enumerate(self.lora_modules):
|
64 |
-
if not isinstance(lora_module, BaseTunerLayer):
|
65 |
-
continue
|
66 |
-
for active_adapter in lora_module.active_adapters:
|
67 |
-
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
68 |
-
|
69 |
-
class set_lora_scale:
|
70 |
-
def __init__(self, lora_modules: List[BaseTunerLayer], scale: float) -> None:
|
71 |
-
self.lora_modules: List[BaseTunerLayer] = [
|
72 |
-
each for each in lora_modules if isinstance(each, BaseTunerLayer)
|
73 |
-
]
|
74 |
-
self.scales = [
|
75 |
-
{
|
76 |
-
active_adapter: lora_module.scaling[active_adapter]
|
77 |
-
for active_adapter in lora_module.active_adapters
|
78 |
-
}
|
79 |
-
for lora_module in self.lora_modules
|
80 |
-
]
|
81 |
-
self.scale = scale
|
82 |
-
|
83 |
-
def __enter__(self) -> None:
|
84 |
-
for lora_module in self.lora_modules:
|
85 |
-
if not isinstance(lora_module, BaseTunerLayer):
|
86 |
-
continue
|
87 |
-
lora_module.scale_layer(self.scale)
|
88 |
-
|
89 |
-
def __exit__(
|
90 |
-
self,
|
91 |
-
exc_type: Optional[Type[BaseException]],
|
92 |
-
exc_val: Optional[BaseException],
|
93 |
-
exc_tb: Optional[Any],
|
94 |
-
) -> None:
|
95 |
-
for i, lora_module in enumerate(self.lora_modules):
|
96 |
-
if not isinstance(lora_module, BaseTunerLayer):
|
97 |
-
continue
|
98 |
-
for active_adapter in lora_module.active_adapters:
|
99 |
-
lora_module.scaling[active_adapter] = self.scales[i][active_adapter]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/pipeline_tools.py
DELETED
@@ -1,685 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import inspect
|
17 |
-
from typing import Any, Callable, Dict, List, Optional, Union
|
18 |
-
import os
|
19 |
-
import torch
|
20 |
-
from torch import Tensor
|
21 |
-
import torch.nn.functional as F
|
22 |
-
from diffusers.pipelines import FluxPipeline
|
23 |
-
from diffusers.utils import logging
|
24 |
-
from diffusers.loaders import TextualInversionLoaderMixin
|
25 |
-
from diffusers.pipelines.flux.pipeline_flux import FluxLoraLoaderMixin
|
26 |
-
from diffusers.models.transformers.transformer_flux import (
|
27 |
-
USE_PEFT_BACKEND,
|
28 |
-
scale_lora_layers,
|
29 |
-
unscale_lora_layers,
|
30 |
-
logger,
|
31 |
-
)
|
32 |
-
from torchvision.transforms import ToPILImage
|
33 |
-
from peft.tuners.tuners_utils import BaseTunerLayer
|
34 |
-
# from optimum.quanto import (
|
35 |
-
# freeze, quantize, QTensor, qfloat8, qint8, qint4, qint2,
|
36 |
-
# )
|
37 |
-
import re
|
38 |
-
import safetensors
|
39 |
-
from src.adapters.mod_adapters import CLIPModAdapter
|
40 |
-
from peft import LoraConfig, set_peft_model_state_dict
|
41 |
-
from transformers import CLIPProcessor, CLIPModel, CLIPVisionModelWithProjection, CLIPVisionModel
|
42 |
-
|
43 |
-
|
44 |
-
def encode_vae_images(pipeline: FluxPipeline, images: Tensor):
|
45 |
-
images = pipeline.image_processor.preprocess(images)
|
46 |
-
images = images.to(pipeline.device).to(pipeline.dtype)
|
47 |
-
images = pipeline.vae.encode(images).latent_dist.sample()
|
48 |
-
images = (
|
49 |
-
images - pipeline.vae.config.shift_factor
|
50 |
-
) * pipeline.vae.config.scaling_factor
|
51 |
-
images_tokens = pipeline._pack_latents(images, *images.shape)
|
52 |
-
images_ids = pipeline._prepare_latent_image_ids(
|
53 |
-
images.shape[0],
|
54 |
-
images.shape[2],
|
55 |
-
images.shape[3],
|
56 |
-
pipeline.device,
|
57 |
-
pipeline.dtype,
|
58 |
-
)
|
59 |
-
if images_tokens.shape[1] != images_ids.shape[0]:
|
60 |
-
images_ids = pipeline._prepare_latent_image_ids(
|
61 |
-
images.shape[0],
|
62 |
-
images.shape[2] // 2,
|
63 |
-
images.shape[3] // 2,
|
64 |
-
pipeline.device,
|
65 |
-
pipeline.dtype,
|
66 |
-
)
|
67 |
-
return images_tokens, images_ids
|
68 |
-
|
69 |
-
def decode_vae_images(pipeline: FluxPipeline, latents: Tensor, height, width, output_type: Optional[str] = "pil"):
|
70 |
-
latents = pipeline._unpack_latents(latents, height, width, pipeline.vae_scale_factor)
|
71 |
-
latents = (latents / pipeline.vae.config.scaling_factor) + pipeline.vae.config.shift_factor
|
72 |
-
image = pipeline.vae.decode(latents, return_dict=False)[0]
|
73 |
-
return pipeline.image_processor.postprocess(image, output_type=output_type)
|
74 |
-
|
75 |
-
|
76 |
-
def _get_clip_prompt_embeds(
|
77 |
-
self,
|
78 |
-
prompt: Union[str, List[str]],
|
79 |
-
num_images_per_prompt: int = 1,
|
80 |
-
device: Optional[torch.device] = None,
|
81 |
-
):
|
82 |
-
device = device or self._execution_device
|
83 |
-
|
84 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
85 |
-
batch_size = len(prompt)
|
86 |
-
|
87 |
-
if isinstance(self, TextualInversionLoaderMixin):
|
88 |
-
prompt = self.maybe_convert_prompt(prompt, self.tokenizer)
|
89 |
-
|
90 |
-
text_inputs = self.tokenizer(
|
91 |
-
prompt,
|
92 |
-
padding="max_length",
|
93 |
-
max_length=self.tokenizer_max_length,
|
94 |
-
truncation=True,
|
95 |
-
return_overflowing_tokens=False,
|
96 |
-
return_length=False,
|
97 |
-
return_tensors="pt",
|
98 |
-
)
|
99 |
-
|
100 |
-
text_input_ids = text_inputs.input_ids
|
101 |
-
|
102 |
-
prompt_embeds = self.text_encoder(text_input_ids.to(device), output_hidden_states=False)
|
103 |
-
|
104 |
-
# Use pooled output of CLIPTextModel
|
105 |
-
prompt_embeds = prompt_embeds.pooler_output
|
106 |
-
prompt_embeds = prompt_embeds.to(dtype=self.text_encoder.dtype, device=device)
|
107 |
-
|
108 |
-
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
109 |
-
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt)
|
110 |
-
prompt_embeds = prompt_embeds.view(batch_size * num_images_per_prompt, -1)
|
111 |
-
|
112 |
-
return prompt_embeds
|
113 |
-
|
114 |
-
def encode_prompt_with_clip_t5(
|
115 |
-
self,
|
116 |
-
prompt: Union[str, List[str]],
|
117 |
-
prompt_2: Union[str, List[str]],
|
118 |
-
device: Optional[torch.device] = None,
|
119 |
-
num_images_per_prompt: int = 1,
|
120 |
-
prompt_embeds: Optional[torch.FloatTensor] = None,
|
121 |
-
pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
|
122 |
-
max_sequence_length: int = 512,
|
123 |
-
lora_scale: Optional[float] = None,
|
124 |
-
):
|
125 |
-
r"""
|
126 |
-
|
127 |
-
Args:
|
128 |
-
prompt (`str` or `List[str]`, *optional*):
|
129 |
-
prompt to be encoded
|
130 |
-
prompt_2 (`str` or `List[str]`, *optional*):
|
131 |
-
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is
|
132 |
-
used in all text-encoders
|
133 |
-
device: (`torch.device`):
|
134 |
-
torch device
|
135 |
-
num_images_per_prompt (`int`):
|
136 |
-
number of images that should be generated per prompt
|
137 |
-
prompt_embeds (`torch.FloatTensor`, *optional*):
|
138 |
-
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
139 |
-
provided, text embeddings will be generated from `prompt` input argument.
|
140 |
-
pooled_prompt_embeds (`torch.FloatTensor`, *optional*):
|
141 |
-
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting.
|
142 |
-
If not provided, pooled text embeddings will be generated from `prompt` input argument.
|
143 |
-
lora_scale (`float`, *optional*):
|
144 |
-
A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.
|
145 |
-
"""
|
146 |
-
device = device or self._execution_device
|
147 |
-
|
148 |
-
# set lora scale so that monkey patched LoRA
|
149 |
-
# function of text encoder can correctly access it
|
150 |
-
if lora_scale is not None and isinstance(self, FluxLoraLoaderMixin):
|
151 |
-
self._lora_scale = lora_scale
|
152 |
-
|
153 |
-
# dynamically adjust the LoRA scale
|
154 |
-
if self.text_encoder is not None and USE_PEFT_BACKEND:
|
155 |
-
scale_lora_layers(self.text_encoder, lora_scale)
|
156 |
-
if self.text_encoder_2 is not None and USE_PEFT_BACKEND:
|
157 |
-
scale_lora_layers(self.text_encoder_2, lora_scale)
|
158 |
-
|
159 |
-
prompt = [prompt] if isinstance(prompt, str) else prompt
|
160 |
-
|
161 |
-
if prompt_embeds is None:
|
162 |
-
prompt_2 = prompt_2 or prompt
|
163 |
-
prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2
|
164 |
-
|
165 |
-
# We only use the pooled prompt output from the CLIPTextModel
|
166 |
-
pooled_prompt_embeds = _get_clip_prompt_embeds(
|
167 |
-
self=self,
|
168 |
-
prompt=prompt,
|
169 |
-
device=device,
|
170 |
-
num_images_per_prompt=num_images_per_prompt,
|
171 |
-
)
|
172 |
-
if self.text_encoder_2 is not None:
|
173 |
-
prompt_embeds = self._get_t5_prompt_embeds(
|
174 |
-
prompt=prompt_2,
|
175 |
-
num_images_per_prompt=num_images_per_prompt,
|
176 |
-
max_sequence_length=max_sequence_length,
|
177 |
-
device=device,
|
178 |
-
)
|
179 |
-
|
180 |
-
if self.text_encoder is not None:
|
181 |
-
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
182 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
183 |
-
unscale_lora_layers(self.text_encoder, lora_scale)
|
184 |
-
|
185 |
-
if self.text_encoder_2 is not None:
|
186 |
-
if isinstance(self, FluxLoraLoaderMixin) and USE_PEFT_BACKEND:
|
187 |
-
# Retrieve the original scale by scaling back the LoRA layers
|
188 |
-
unscale_lora_layers(self.text_encoder_2, lora_scale)
|
189 |
-
|
190 |
-
dtype = self.text_encoder.dtype if self.text_encoder is not None else self.transformer.dtype
|
191 |
-
if self.text_encoder_2 is not None:
|
192 |
-
text_ids = torch.zeros(prompt_embeds.shape[1], 3).to(device=device, dtype=dtype)
|
193 |
-
else:
|
194 |
-
text_ids = None
|
195 |
-
|
196 |
-
return prompt_embeds, pooled_prompt_embeds, text_ids
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
def prepare_text_input(
|
201 |
-
pipeline: FluxPipeline,
|
202 |
-
prompts,
|
203 |
-
max_sequence_length=512,
|
204 |
-
):
|
205 |
-
# Turn off warnings (CLIP overflow)
|
206 |
-
logger.setLevel(logging.ERROR)
|
207 |
-
(
|
208 |
-
t5_prompt_embeds,
|
209 |
-
pooled_prompt_embeds,
|
210 |
-
text_ids,
|
211 |
-
) = encode_prompt_with_clip_t5(
|
212 |
-
self=pipeline,
|
213 |
-
prompt=prompts,
|
214 |
-
prompt_2=None,
|
215 |
-
prompt_embeds=None,
|
216 |
-
pooled_prompt_embeds=None,
|
217 |
-
device=pipeline.device,
|
218 |
-
num_images_per_prompt=1,
|
219 |
-
max_sequence_length=max_sequence_length,
|
220 |
-
lora_scale=None,
|
221 |
-
)
|
222 |
-
# Turn on warnings
|
223 |
-
logger.setLevel(logging.WARNING)
|
224 |
-
return t5_prompt_embeds, pooled_prompt_embeds, text_ids
|
225 |
-
|
226 |
-
def prepare_t5_input(
|
227 |
-
pipeline: FluxPipeline,
|
228 |
-
prompts,
|
229 |
-
max_sequence_length=512,
|
230 |
-
):
|
231 |
-
# Turn off warnings (CLIP overflow)
|
232 |
-
logger.setLevel(logging.ERROR)
|
233 |
-
(
|
234 |
-
t5_prompt_embeds,
|
235 |
-
pooled_prompt_embeds,
|
236 |
-
text_ids,
|
237 |
-
) = encode_prompt_with_clip_t5(
|
238 |
-
self=pipeline,
|
239 |
-
prompt=prompts,
|
240 |
-
prompt_2=None,
|
241 |
-
prompt_embeds=None,
|
242 |
-
pooled_prompt_embeds=None,
|
243 |
-
device=pipeline.device,
|
244 |
-
num_images_per_prompt=1,
|
245 |
-
max_sequence_length=max_sequence_length,
|
246 |
-
lora_scale=None,
|
247 |
-
)
|
248 |
-
# Turn on warnings
|
249 |
-
logger.setLevel(logging.WARNING)
|
250 |
-
return t5_prompt_embeds, pooled_prompt_embeds, text_ids
|
251 |
-
|
252 |
-
def tokenize_t5_prompt(pipe, input_prompt, max_length, **kargs):
|
253 |
-
return pipe.tokenizer_2(
|
254 |
-
input_prompt,
|
255 |
-
padding="max_length",
|
256 |
-
max_length=max_length,
|
257 |
-
truncation=True,
|
258 |
-
return_length=False,
|
259 |
-
return_overflowing_tokens=False,
|
260 |
-
return_tensors="pt",
|
261 |
-
**kargs,
|
262 |
-
)
|
263 |
-
|
264 |
-
def clear_attn_maps(transformer):
|
265 |
-
for i, block in enumerate(transformer.transformer_blocks):
|
266 |
-
if hasattr(block.attn, "attn_maps"):
|
267 |
-
del block.attn.attn_maps
|
268 |
-
del block.attn.timestep
|
269 |
-
for i, block in enumerate(transformer.single_transformer_blocks):
|
270 |
-
if hasattr(block.attn, "cond2latents"):
|
271 |
-
del block.attn.cond2latents
|
272 |
-
|
273 |
-
def gather_attn_maps(transformer, clear=False):
|
274 |
-
t2i_attn_maps = {}
|
275 |
-
i2t_attn_maps = {}
|
276 |
-
for i, block in enumerate(transformer.transformer_blocks):
|
277 |
-
name = f"block_{i}"
|
278 |
-
if hasattr(block.attn, "attn_maps"):
|
279 |
-
attention_maps = block.attn.attn_maps
|
280 |
-
timesteps = block.attn.timestep # (B,)
|
281 |
-
for (timestep, (t2i_attn_map, i2t_attn_map)) in zip(timesteps, attention_maps):
|
282 |
-
timestep = str(timestep.item())
|
283 |
-
|
284 |
-
t2i_attn_maps[timestep] = t2i_attn_maps.get(timestep, dict())
|
285 |
-
t2i_attn_maps[timestep][name] = t2i_attn_maps[timestep].get(name, [])
|
286 |
-
t2i_attn_maps[timestep][name].append(t2i_attn_map.cpu())
|
287 |
-
|
288 |
-
i2t_attn_maps[timestep] = i2t_attn_maps.get(timestep, dict())
|
289 |
-
i2t_attn_maps[timestep][name] = i2t_attn_maps[timestep].get(name, [])
|
290 |
-
i2t_attn_maps[timestep][name].append(i2t_attn_map.cpu())
|
291 |
-
|
292 |
-
if clear:
|
293 |
-
del block.attn.attn_maps
|
294 |
-
|
295 |
-
for timestep in t2i_attn_maps:
|
296 |
-
for name in t2i_attn_maps[timestep]:
|
297 |
-
t2i_attn_maps[timestep][name] = torch.cat(t2i_attn_maps[timestep][name], dim=0)
|
298 |
-
i2t_attn_maps[timestep][name] = torch.cat(i2t_attn_maps[timestep][name], dim=0)
|
299 |
-
|
300 |
-
return t2i_attn_maps, i2t_attn_maps
|
301 |
-
|
302 |
-
def process_token(token, startofword):
|
303 |
-
if '</w>' in token:
|
304 |
-
token = token.replace('</w>', '')
|
305 |
-
if startofword:
|
306 |
-
token = '<' + token + '>'
|
307 |
-
else:
|
308 |
-
token = '-' + token + '>'
|
309 |
-
startofword = True
|
310 |
-
elif token not in ['<|startoftext|>', '<|endoftext|>']:
|
311 |
-
if startofword:
|
312 |
-
token = '<' + token + '-'
|
313 |
-
startofword = False
|
314 |
-
else:
|
315 |
-
token = '-' + token + '-'
|
316 |
-
return token, startofword
|
317 |
-
|
318 |
-
def save_attention_image(attn_map, tokens, batch_dir, to_pil):
|
319 |
-
startofword = True
|
320 |
-
for i, (token, a) in enumerate(zip(tokens, attn_map[:len(tokens)])):
|
321 |
-
token, startofword = process_token(token, startofword)
|
322 |
-
token = token.replace("/", "-")
|
323 |
-
if token == '-<pad>-':
|
324 |
-
continue
|
325 |
-
a = a.to(torch.float32)
|
326 |
-
a = a / a.max() * 255 / 256
|
327 |
-
to_pil(a).save(os.path.join(batch_dir, f'{i}-{token}.png'))
|
328 |
-
|
329 |
-
def save_attention_maps(attn_maps, pipe, prompts, base_dir='attn_maps'):
|
330 |
-
to_pil = ToPILImage()
|
331 |
-
|
332 |
-
token_ids = tokenize_t5_prompt(pipe, prompts, 512).input_ids # (B, 512)
|
333 |
-
token_ids = [x for x in token_ids]
|
334 |
-
total_tokens = [pipe.tokenizer_2.convert_ids_to_tokens(token_id) for token_id in token_ids]
|
335 |
-
|
336 |
-
os.makedirs(base_dir, exist_ok=True)
|
337 |
-
|
338 |
-
total_attn_map_shape = (256, 256)
|
339 |
-
total_attn_map_number = 0
|
340 |
-
|
341 |
-
# (B, 24, H, W, 512) -> (B, H, W, 512) -> (B, 512, H, W)
|
342 |
-
print(attn_maps.keys())
|
343 |
-
total_attn_map = list(list(attn_maps.values())[0].values())[0].sum(1)
|
344 |
-
total_attn_map = total_attn_map.permute(0, 3, 1, 2)
|
345 |
-
total_attn_map = torch.zeros_like(total_attn_map)
|
346 |
-
total_attn_map = F.interpolate(total_attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
|
347 |
-
|
348 |
-
for timestep, layers in attn_maps.items():
|
349 |
-
timestep_dir = os.path.join(base_dir, f'{timestep}')
|
350 |
-
os.makedirs(timestep_dir, exist_ok=True)
|
351 |
-
|
352 |
-
for layer, attn_map in layers.items():
|
353 |
-
layer_dir = os.path.join(timestep_dir, f'{layer}')
|
354 |
-
os.makedirs(layer_dir, exist_ok=True)
|
355 |
-
|
356 |
-
attn_map = attn_map.sum(1).squeeze(1).permute(0, 3, 1, 2)
|
357 |
-
|
358 |
-
resized_attn_map = F.interpolate(attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
|
359 |
-
total_attn_map += resized_attn_map
|
360 |
-
total_attn_map_number += 1
|
361 |
-
|
362 |
-
for batch, (attn_map, tokens) in enumerate(zip(resized_attn_map, total_tokens)):
|
363 |
-
save_attention_image(attn_map, tokens, layer_dir, to_pil)
|
364 |
-
|
365 |
-
# for batch, (tokens, attn) in enumerate(zip(total_tokens, attn_map)):
|
366 |
-
# batch_dir = os.path.join(layer_dir, f'batch-{batch}')
|
367 |
-
# os.makedirs(batch_dir, exist_ok=True)
|
368 |
-
# save_attention_image(attn, tokens, batch_dir, to_pil)
|
369 |
-
|
370 |
-
total_attn_map /= total_attn_map_number
|
371 |
-
for batch, (attn_map, tokens) in enumerate(zip(total_attn_map, total_tokens)):
|
372 |
-
batch_dir = os.path.join(base_dir, f'batch-{batch}')
|
373 |
-
os.makedirs(batch_dir, exist_ok=True)
|
374 |
-
save_attention_image(attn_map, tokens, batch_dir, to_pil)
|
375 |
-
|
376 |
-
def gather_cond2latents(transformer, clear=False):
|
377 |
-
c2l_attn_maps = {}
|
378 |
-
# for i, block in enumerate(transformer.transformer_blocks):
|
379 |
-
for i, block in enumerate(transformer.single_transformer_blocks):
|
380 |
-
name = f"block_{i}"
|
381 |
-
if hasattr(block.attn, "cond2latents"):
|
382 |
-
attention_maps = block.attn.cond2latents
|
383 |
-
timesteps = block.attn.cond_timesteps # (B,)
|
384 |
-
for (timestep, c2l_attn_map) in zip(timesteps, attention_maps):
|
385 |
-
timestep = str(timestep.item())
|
386 |
-
|
387 |
-
c2l_attn_maps[timestep] = c2l_attn_maps.get(timestep, dict())
|
388 |
-
c2l_attn_maps[timestep][name] = c2l_attn_maps[timestep].get(name, [])
|
389 |
-
c2l_attn_maps[timestep][name].append(c2l_attn_map.cpu())
|
390 |
-
|
391 |
-
if clear:
|
392 |
-
# del block.attn.attn_maps
|
393 |
-
del block.attn.cond2latents
|
394 |
-
del block.attn.cond_timesteps
|
395 |
-
|
396 |
-
for timestep in c2l_attn_maps:
|
397 |
-
for name in c2l_attn_maps[timestep]:
|
398 |
-
c2l_attn_maps[timestep][name] = torch.cat(c2l_attn_maps[timestep][name], dim=0)
|
399 |
-
|
400 |
-
return c2l_attn_maps
|
401 |
-
|
402 |
-
def save_cond2latent_image(attn_map, batch_dir, to_pil):
|
403 |
-
for i, a in enumerate(attn_map): # (N, H, W)
|
404 |
-
a = a.to(torch.float32)
|
405 |
-
a = a / a.max() * 255 / 256
|
406 |
-
to_pil(a).save(os.path.join(batch_dir, f'{i}.png'))
|
407 |
-
|
408 |
-
def save_cond2latent(attn_maps, base_dir='attn_maps'):
|
409 |
-
to_pil = ToPILImage()
|
410 |
-
|
411 |
-
os.makedirs(base_dir, exist_ok=True)
|
412 |
-
|
413 |
-
total_attn_map_shape = (256, 256)
|
414 |
-
total_attn_map_number = 0
|
415 |
-
|
416 |
-
# (N, H, W) -> (1, N, H, W)
|
417 |
-
total_attn_map = list(list(attn_maps.values())[0].values())[0].unsqueeze(0)
|
418 |
-
total_attn_map = torch.zeros_like(total_attn_map)
|
419 |
-
total_attn_map = F.interpolate(total_attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
|
420 |
-
|
421 |
-
for timestep, layers in attn_maps.items():
|
422 |
-
cur_ts_attn_map = torch.zeros_like(total_attn_map)
|
423 |
-
cur_ts_attn_map_number = 0
|
424 |
-
|
425 |
-
timestep_dir = os.path.join(base_dir, f'{timestep}')
|
426 |
-
os.makedirs(timestep_dir, exist_ok=True)
|
427 |
-
|
428 |
-
for layer, attn_map in layers.items():
|
429 |
-
# layer_dir = os.path.join(timestep_dir, f'{layer}')
|
430 |
-
# os.makedirs(layer_dir, exist_ok=True)
|
431 |
-
|
432 |
-
attn_map = attn_map.unsqueeze(0) # (1, N, H, W)
|
433 |
-
resized_attn_map = F.interpolate(attn_map, size=total_attn_map_shape, mode='bilinear', align_corners=False)
|
434 |
-
|
435 |
-
cur_ts_attn_map += resized_attn_map
|
436 |
-
cur_ts_attn_map_number += 1
|
437 |
-
|
438 |
-
for batch, attn_map in enumerate(cur_ts_attn_map / cur_ts_attn_map_number):
|
439 |
-
save_cond2latent_image(attn_map, timestep_dir, to_pil)
|
440 |
-
|
441 |
-
total_attn_map += cur_ts_attn_map
|
442 |
-
total_attn_map_number += cur_ts_attn_map_number
|
443 |
-
|
444 |
-
total_attn_map /= total_attn_map_number
|
445 |
-
for batch, attn_map in enumerate(total_attn_map):
|
446 |
-
batch_dir = os.path.join(base_dir, f'batch-{batch}')
|
447 |
-
os.makedirs(batch_dir, exist_ok=True)
|
448 |
-
save_cond2latent_image(attn_map, batch_dir, to_pil)
|
449 |
-
|
450 |
-
def quantization(pipe, qtype):
|
451 |
-
if qtype != "None" and qtype != "":
|
452 |
-
if qtype.endswith("quanto"):
|
453 |
-
if qtype == "int2-quanto":
|
454 |
-
quant_level = qint2
|
455 |
-
elif qtype == "int4-quanto":
|
456 |
-
quant_level = qint4
|
457 |
-
elif qtype == "int8-quanto":
|
458 |
-
quant_level = qint8
|
459 |
-
elif qtype == "fp8-quanto":
|
460 |
-
quant_level = qfloat8
|
461 |
-
else:
|
462 |
-
raise ValueError(f"Invalid quantisation level: {qtype}")
|
463 |
-
|
464 |
-
extra_quanto_args = {}
|
465 |
-
extra_quanto_args["exclude"] = [
|
466 |
-
"*.norm",
|
467 |
-
"*.norm1",
|
468 |
-
"*.norm2",
|
469 |
-
"*.norm2_context",
|
470 |
-
"proj_out",
|
471 |
-
"x_embedder",
|
472 |
-
"norm_out",
|
473 |
-
"context_embedder",
|
474 |
-
]
|
475 |
-
try:
|
476 |
-
quantize(pipe.transformer, weights=quant_level, **extra_quanto_args)
|
477 |
-
quantize(pipe.text_encoder_2, weights=quant_level, **extra_quanto_args)
|
478 |
-
print("[Quantization] Start freezing")
|
479 |
-
freeze(pipe.transformer)
|
480 |
-
freeze(pipe.text_encoder_2)
|
481 |
-
print("[Quantization] Finished")
|
482 |
-
except Exception as e:
|
483 |
-
if "out of memory" in str(e).lower():
|
484 |
-
print(
|
485 |
-
"GPU ran out of memory during quantisation. Use --quantize_via=cpu to use the slower CPU method."
|
486 |
-
)
|
487 |
-
raise e
|
488 |
-
else:
|
489 |
-
assert qtype == "fp8-ao"
|
490 |
-
from torchao.float8 import convert_to_float8_training, Float8LinearConfig
|
491 |
-
def module_filter_fn(mod: torch.nn.Module, fqn: str):
|
492 |
-
# don't convert the output module
|
493 |
-
if fqn == "proj_out":
|
494 |
-
return False
|
495 |
-
# don't convert linear modules with weight dimensions not divisible by 16
|
496 |
-
if isinstance(mod, torch.nn.Linear):
|
497 |
-
if mod.in_features % 16 != 0 or mod.out_features % 16 != 0:
|
498 |
-
return False
|
499 |
-
return True
|
500 |
-
convert_to_float8_training(
|
501 |
-
pipe.transformer, module_filter_fn=module_filter_fn, config=Float8LinearConfig(pad_inner_dim=True)
|
502 |
-
)
|
503 |
-
|
504 |
-
class CustomFluxPipeline:
|
505 |
-
def __init__(
|
506 |
-
self,
|
507 |
-
config,
|
508 |
-
device="cuda",
|
509 |
-
ckpt_root=None,
|
510 |
-
ckpt_root_condition=None,
|
511 |
-
torch_dtype=torch.bfloat16,
|
512 |
-
):
|
513 |
-
model_path = os.getenv("FLUX_MODEL_PATH", "black-forest-labs/FLUX.1-dev")
|
514 |
-
print("[CustomFluxPipeline] Loading FLUX Pipeline")
|
515 |
-
self.pipe = FluxPipeline.from_pretrained(model_path, torch_dtype=torch_dtype).to(device)
|
516 |
-
|
517 |
-
self.config = config
|
518 |
-
self.device = device
|
519 |
-
self.dtype = torch_dtype
|
520 |
-
if config["model"].get("dit_quant", "None") != "None":
|
521 |
-
quantization(self.pipe, config["model"]["dit_quant"])
|
522 |
-
|
523 |
-
self.modulation_adapters = []
|
524 |
-
self.pipe.modulation_adapters = []
|
525 |
-
|
526 |
-
try:
|
527 |
-
if config["model"]["modulation"]["use_clip"]:
|
528 |
-
load_clip(self, config, torch_dtype, device, None, is_training=False)
|
529 |
-
except Exception as e:
|
530 |
-
print(e)
|
531 |
-
|
532 |
-
if config["model"]["use_dit_lora"] or config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]:
|
533 |
-
if ckpt_root_condition is None and (config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]):
|
534 |
-
ckpt_root_condition = ckpt_root
|
535 |
-
load_dit_lora(self, self.pipe, config, torch_dtype, device, f"{ckpt_root}", f"{ckpt_root_condition}", is_training=False)
|
536 |
-
|
537 |
-
def add_modulation_adapter(self, modulation_adapter):
|
538 |
-
self.modulation_adapters.append(modulation_adapter)
|
539 |
-
self.pipe.modulation_adapters.append(modulation_adapter)
|
540 |
-
|
541 |
-
def clear_modulation_adapters(self):
|
542 |
-
self.modulation_adapters = []
|
543 |
-
self.pipe.modulation_adapters = []
|
544 |
-
torch.cuda.empty_cache()
|
545 |
-
|
546 |
-
def load_clip(self, config, torch_dtype, device, ckpt_dir=None, is_training=False):
|
547 |
-
model_path = os.getenv("CLIP_MODEL_PATH", "openai/clip-vit-large-patch14")
|
548 |
-
clip_model = CLIPVisionModelWithProjection.from_pretrained(model_path).to(device, dtype=torch_dtype)
|
549 |
-
clip_processor = CLIPProcessor.from_pretrained(model_path)
|
550 |
-
self.pipe.clip_model = clip_model
|
551 |
-
self.pipe.clip_processor = clip_processor
|
552 |
-
|
553 |
-
def load_dit_lora(self, pipe, config, torch_dtype, device, ckpt_dir=None, condition_ckpt_dir=None, is_training=False):
|
554 |
-
|
555 |
-
if not config["model"]["use_condition_dblock_lora"] and not config["model"]["use_condition_sblock_lora"] and not config["model"]["use_dit_lora"]:
|
556 |
-
print("[load_dit_lora] no dit lora, no condition lora")
|
557 |
-
return []
|
558 |
-
|
559 |
-
adapter_names = ["default", "condition"]
|
560 |
-
|
561 |
-
if condition_ckpt_dir is None:
|
562 |
-
condition_ckpt_dir = ckpt_dir
|
563 |
-
|
564 |
-
if not config["model"]["use_condition_dblock_lora"] and not config["model"]["use_condition_sblock_lora"]:
|
565 |
-
print("[load_dit_lora] no condition lora")
|
566 |
-
adapter_names.pop(1)
|
567 |
-
elif condition_ckpt_dir is not None and os.path.exists(os.path.join(condition_ckpt_dir, "pytorch_lora_weights_condition.safetensors")):
|
568 |
-
assert "condition" in adapter_names
|
569 |
-
print(f"[load_dit_lora] load condition lora from {condition_ckpt_dir}")
|
570 |
-
pipe.transformer.load_lora_adapter(condition_ckpt_dir, use_safetensors=True, adapter_name="condition", weight_name="pytorch_lora_weights_condition.safetensors") # TODO: check if they are trainable
|
571 |
-
else:
|
572 |
-
assert is_training
|
573 |
-
assert "condition" in adapter_names
|
574 |
-
print("[load_dit_lora] init new condition lora")
|
575 |
-
pipe.transformer.add_adapter(LoraConfig(**config["model"]["condition_lora_config"]), adapter_name="condition")
|
576 |
-
|
577 |
-
if not config["model"]["use_dit_lora"]:
|
578 |
-
print("[load_dit_lora] no dit lora")
|
579 |
-
adapter_names.pop(0)
|
580 |
-
elif ckpt_dir is not None and os.path.exists(os.path.join(ckpt_dir, "pytorch_lora_weights.safetensors")):
|
581 |
-
assert "default" in adapter_names
|
582 |
-
print(f"[load_dit_lora] load dit lora from {ckpt_dir}")
|
583 |
-
lora_file = os.path.join(ckpt_dir, "pytorch_lora_weights.safetensors")
|
584 |
-
lora_state_dict = safetensors.torch.load_file(lora_file, device="cpu")
|
585 |
-
|
586 |
-
single_lora_pattern = "(.*single_transformer_blocks\\.[0-9]+\\.norm\\.linear|.*single_transformer_blocks\\.[0-9]+\\.proj_mlp|.*single_transformer_blocks\\.[0-9]+\\.proj_out|.*single_transformer_blocks\\.[0-9]+\\.attn.to_k|.*single_transformer_blocks\\.[0-9]+\\.attn.to_q|.*single_transformer_blocks\\.[0-9]+\\.attn.to_v|.*single_transformer_blocks\\.[0-9]+\\.attn.to_out)"
|
587 |
-
latent_lora_pattern = "(.*(?<!single_)transformer_blocks\\.[0-9]+\\.norm1\\.linear|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_k|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_q|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_v|.*(?<!single_)transformer_blocks\\.[0-9]+\\.attn\\.to_out\\.0|.*(?<!single_)transformer_blocks\\.[0-9]+\\.ff\\.net\\.2)"
|
588 |
-
use_pretrained_dit_single_lora = config["model"].get("use_pretrained_dit_single_lora", True)
|
589 |
-
use_pretrained_dit_latent_lora = config["model"].get("use_pretrained_dit_latent_lora", True)
|
590 |
-
if not use_pretrained_dit_single_lora or not use_pretrained_dit_latent_lora:
|
591 |
-
lora_state_dict_keys = list(lora_state_dict.keys())
|
592 |
-
for layer_name in lora_state_dict_keys:
|
593 |
-
if not use_pretrained_dit_single_lora:
|
594 |
-
if re.search(single_lora_pattern, layer_name):
|
595 |
-
del lora_state_dict[layer_name]
|
596 |
-
if not use_pretrained_dit_latent_lora:
|
597 |
-
if re.search(latent_lora_pattern, layer_name):
|
598 |
-
del lora_state_dict[layer_name]
|
599 |
-
pipe.transformer.add_adapter(LoraConfig(**config["model"]["dit_lora_config"]), adapter_name="default")
|
600 |
-
set_peft_model_state_dict(pipe.transformer, lora_state_dict, adapter_name="default")
|
601 |
-
else:
|
602 |
-
pipe.transformer.load_lora_adapter(ckpt_dir, use_safetensors=True, adapter_name="default", weight_name="pytorch_lora_weights.safetensors") # TODO: check if they are trainable
|
603 |
-
else:
|
604 |
-
assert is_training
|
605 |
-
assert "default" in adapter_names
|
606 |
-
print("[load_dit_lora] init new dit lora")
|
607 |
-
pipe.transformer.add_adapter(LoraConfig(**config["model"]["dit_lora_config"]), adapter_name="default")
|
608 |
-
|
609 |
-
assert len(adapter_names) <= 2 and len(adapter_names) > 0
|
610 |
-
for name, module in pipe.transformer.named_modules():
|
611 |
-
if isinstance(module, BaseTunerLayer):
|
612 |
-
module.set_adapter(adapter_names)
|
613 |
-
|
614 |
-
if "default" in adapter_names: assert config["model"]["use_dit_lora"]
|
615 |
-
if "condition" in adapter_names: assert config["model"]["use_condition_dblock_lora"] or config["model"]["use_condition_sblock_lora"]
|
616 |
-
|
617 |
-
lora_layers = list(filter(
|
618 |
-
lambda p: p[1].requires_grad, pipe.transformer.named_parameters()
|
619 |
-
))
|
620 |
-
|
621 |
-
lora_layers = [l[1] for l in lora_layers]
|
622 |
-
return lora_layers
|
623 |
-
|
624 |
-
def load_modulation_adapter(self, config, torch_dtype, device, ckpt_dir=None, is_training=False):
|
625 |
-
adapter_type = config["model"]["modulation"]["adapter_type"]
|
626 |
-
|
627 |
-
if ckpt_dir is not None and os.path.exists(ckpt_dir):
|
628 |
-
print(f"loading modulation adapter from {ckpt_dir}")
|
629 |
-
modulation_adapter = CLIPModAdapter.from_pretrained(
|
630 |
-
ckpt_dir, subfolder="modulation_adapter", strict=False,
|
631 |
-
low_cpu_mem_usage=False, device_map=None,
|
632 |
-
).to(device)
|
633 |
-
else:
|
634 |
-
print(f"Init new modulation adapter")
|
635 |
-
adapter_layers = config["model"]["modulation"]["adapter_layers"]
|
636 |
-
adapter_width = config["model"]["modulation"]["adapter_width"]
|
637 |
-
pblock_adapter_layers = config["model"]["modulation"]["per_block_adapter_layers"]
|
638 |
-
pblock_adapter_width = config["model"]["modulation"]["per_block_adapter_width"]
|
639 |
-
pblock_adapter_single_blocks = config["model"]["modulation"]["per_block_adapter_single_blocks"]
|
640 |
-
use_text_mod = config["model"]["modulation"]["use_text_mod"]
|
641 |
-
use_img_mod = config["model"]["modulation"]["use_img_mod"]
|
642 |
-
|
643 |
-
out_dim = config["model"]["modulation"]["out_dim"]
|
644 |
-
if adapter_type == "clip_adapter":
|
645 |
-
modulation_adapter = CLIPModAdapter(
|
646 |
-
out_dim=out_dim,
|
647 |
-
width=adapter_width,
|
648 |
-
pblock_width=pblock_adapter_width,
|
649 |
-
layers=adapter_layers,
|
650 |
-
pblock_layers=pblock_adapter_layers,
|
651 |
-
heads=8,
|
652 |
-
input_text_dim=4096,
|
653 |
-
input_image_dim=1024,
|
654 |
-
pblock_single_blocks=pblock_adapter_single_blocks,
|
655 |
-
)
|
656 |
-
else:
|
657 |
-
raise NotImplementedError()
|
658 |
-
|
659 |
-
if is_training:
|
660 |
-
modulation_adapter.train()
|
661 |
-
try:
|
662 |
-
modulation_adapter.enable_gradient_checkpointing()
|
663 |
-
except Exception as e:
|
664 |
-
print(e)
|
665 |
-
if not config["model"]["modulation"]["use_perblock_adapter"]:
|
666 |
-
try:
|
667 |
-
modulation_adapter.net2.requires_grad_(False)
|
668 |
-
except Exception as e:
|
669 |
-
print(e)
|
670 |
-
else:
|
671 |
-
modulation_adapter.requires_grad_(False)
|
672 |
-
|
673 |
-
modulation_adapter.to(device, dtype=torch_dtype)
|
674 |
-
return modulation_adapter
|
675 |
-
|
676 |
-
|
677 |
-
def load_ckpt(self, ckpt_dir, is_training=False):
|
678 |
-
if self.config["model"]["use_dit_lora"]:
|
679 |
-
self.pipe.transformer.delete_adapters(["subject"])
|
680 |
-
lora_path = f"{ckpt_dir}/pytorch_lora_weights.safetensors"
|
681 |
-
print(f"Loading DIT Lora from {lora_path}")
|
682 |
-
self.pipe.load_lora_weights(lora_path, adapter_name="subject")
|
683 |
-
|
684 |
-
|
685 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/flux/transformer.py
DELETED
@@ -1,363 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright 2024 Black Forest Labs and The HuggingFace Team. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import torch
|
17 |
-
from diffusers.pipelines import FluxPipeline
|
18 |
-
from typing import List, Union, Optional, Dict, Any, Callable
|
19 |
-
from .block import block_forward, single_block_forward
|
20 |
-
from .lora_controller import enable_lora
|
21 |
-
from diffusers.models.transformers.transformer_flux import (
|
22 |
-
FluxTransformer2DModel,
|
23 |
-
Transformer2DModelOutput,
|
24 |
-
USE_PEFT_BACKEND,
|
25 |
-
scale_lora_layers,
|
26 |
-
unscale_lora_layers,
|
27 |
-
logger,
|
28 |
-
)
|
29 |
-
import numpy as np
|
30 |
-
|
31 |
-
import numpy as np
|
32 |
-
import torch
|
33 |
-
import torch.nn as nn
|
34 |
-
import torch.nn.functional as F
|
35 |
-
|
36 |
-
|
37 |
-
def prepare_params(
|
38 |
-
hidden_states: torch.Tensor,
|
39 |
-
encoder_hidden_states: torch.Tensor = None,
|
40 |
-
pooled_projections: torch.Tensor = None,
|
41 |
-
timestep: torch.LongTensor = None,
|
42 |
-
img_ids: torch.Tensor = None,
|
43 |
-
txt_ids: torch.Tensor = None,
|
44 |
-
guidance: torch.Tensor = None,
|
45 |
-
joint_attention_kwargs: Optional[Dict[str, Any]] = None,
|
46 |
-
controlnet_block_samples=None,
|
47 |
-
controlnet_single_block_samples=None,
|
48 |
-
return_dict: bool = True,
|
49 |
-
**kwargs: dict,
|
50 |
-
):
|
51 |
-
return (
|
52 |
-
hidden_states,
|
53 |
-
encoder_hidden_states,
|
54 |
-
pooled_projections,
|
55 |
-
timestep,
|
56 |
-
img_ids,
|
57 |
-
txt_ids,
|
58 |
-
guidance,
|
59 |
-
joint_attention_kwargs,
|
60 |
-
controlnet_block_samples,
|
61 |
-
controlnet_single_block_samples,
|
62 |
-
return_dict,
|
63 |
-
)
|
64 |
-
|
65 |
-
def is_torch_version(spec: str) -> bool:
|
66 |
-
# e.g. spec = ">=1.12.0"
|
67 |
-
return version.parse(torch.__version__) in version.SpecifierSet(spec)
|
68 |
-
|
69 |
-
def tranformer_forward(
|
70 |
-
transformer: FluxTransformer2DModel,
|
71 |
-
condition_latents: torch.Tensor,
|
72 |
-
condition_ids: torch.Tensor,
|
73 |
-
condition_type_ids: torch.Tensor,
|
74 |
-
model_config: Optional[Dict[str, Any]] = {},
|
75 |
-
c_t=0,
|
76 |
-
text_cond_mask: Optional[torch.FloatTensor] = None,
|
77 |
-
delta_emb: Optional[torch.FloatTensor] = None,
|
78 |
-
delta_emb_pblock: Optional[torch.FloatTensor] = None,
|
79 |
-
delta_emb_mask: Optional[torch.FloatTensor] = None,
|
80 |
-
delta_start_ends = None,
|
81 |
-
store_attn_map: bool = False,
|
82 |
-
use_text_mod: bool = True,
|
83 |
-
use_img_mod: bool = False,
|
84 |
-
mod_adapter = None,
|
85 |
-
latent_height: Optional[int] = None,
|
86 |
-
last_attn_map = None,
|
87 |
-
**params: dict,
|
88 |
-
):
|
89 |
-
self = transformer
|
90 |
-
use_condition = condition_latents is not None
|
91 |
-
|
92 |
-
(
|
93 |
-
hidden_states,
|
94 |
-
encoder_hidden_states,
|
95 |
-
pooled_projections,
|
96 |
-
timestep,
|
97 |
-
img_ids,
|
98 |
-
txt_ids,
|
99 |
-
guidance,
|
100 |
-
joint_attention_kwargs,
|
101 |
-
controlnet_block_samples,
|
102 |
-
controlnet_single_block_samples,
|
103 |
-
return_dict,
|
104 |
-
) = prepare_params(**params)
|
105 |
-
|
106 |
-
if joint_attention_kwargs is not None:
|
107 |
-
joint_attention_kwargs = joint_attention_kwargs.copy()
|
108 |
-
lora_scale = joint_attention_kwargs.pop("scale", 1.0)
|
109 |
-
latent_sblora_weight = joint_attention_kwargs.pop("latent_sblora_weight", None)
|
110 |
-
condition_sblora_weight = joint_attention_kwargs.pop("condition_sblora_weight", None)
|
111 |
-
else:
|
112 |
-
lora_scale = 1.0
|
113 |
-
latent_sblora_weight = None
|
114 |
-
condition_sblora_weight = None
|
115 |
-
if USE_PEFT_BACKEND:
|
116 |
-
# weight the lora layers by setting `lora_scale` for each PEFT layer
|
117 |
-
scale_lora_layers(self, lora_scale)
|
118 |
-
else:
|
119 |
-
if (
|
120 |
-
joint_attention_kwargs is not None
|
121 |
-
and joint_attention_kwargs.get("scale", None) is not None
|
122 |
-
):
|
123 |
-
logger.warning(
|
124 |
-
"Passing `scale` via `joint_attention_kwargs` when not using the PEFT backend is ineffective."
|
125 |
-
)
|
126 |
-
|
127 |
-
train_partial_text_lora = model_config.get("train_partial_text_lora", False)
|
128 |
-
train_partial_latent_lora = model_config.get("train_partial_latent_lora", False)
|
129 |
-
|
130 |
-
if train_partial_text_lora or train_partial_latent_lora:
|
131 |
-
train_partial_text_lora_layers = model_config.get("train_partial_text_lora_layers", "")
|
132 |
-
train_partial_latent_lora_layers = model_config.get("train_partial_latent_lora_layers", "")
|
133 |
-
activate_x_embedder = True
|
134 |
-
if "x_embedder" not in train_partial_text_lora_layers or "x_embedder" not in train_partial_latent_lora_layers:
|
135 |
-
activate_x_embedder = False
|
136 |
-
if train_partial_text_lora or train_partial_latent_lora:
|
137 |
-
activate_x_embedder_ = activate_x_embedder
|
138 |
-
else:
|
139 |
-
activate_x_embedder_ = model_config["latent_lora"] or model_config["text_lora"]
|
140 |
-
|
141 |
-
with enable_lora((self.x_embedder,), activate_x_embedder_):
|
142 |
-
hidden_states = self.x_embedder(hidden_states)
|
143 |
-
cond_lora_activate = model_config["use_condition_dblock_lora"] or model_config["use_condition_sblock_lora"]
|
144 |
-
with enable_lora(
|
145 |
-
(self.x_embedder,),
|
146 |
-
dit_activated=activate_x_embedder if train_partial_text_lora or train_partial_latent_lora else not cond_lora_activate, cond_activated=cond_lora_activate,
|
147 |
-
):
|
148 |
-
condition_latents = self.x_embedder(condition_latents) if use_condition else None
|
149 |
-
|
150 |
-
timestep = timestep.to(hidden_states.dtype) * 1000
|
151 |
-
|
152 |
-
if guidance is not None:
|
153 |
-
guidance = guidance.to(hidden_states.dtype) * 1000
|
154 |
-
else:
|
155 |
-
guidance = None
|
156 |
-
|
157 |
-
temb = (
|
158 |
-
self.time_text_embed(timestep, pooled_projections)
|
159 |
-
if guidance is None
|
160 |
-
else self.time_text_embed(timestep, guidance, pooled_projections)
|
161 |
-
) # (B, 3072)
|
162 |
-
|
163 |
-
cond_temb = (
|
164 |
-
self.time_text_embed(torch.ones_like(timestep) * c_t * 1000, pooled_projections)
|
165 |
-
if guidance is None
|
166 |
-
else self.time_text_embed(
|
167 |
-
torch.ones_like(timestep) * c_t * 1000, guidance, pooled_projections
|
168 |
-
)
|
169 |
-
)
|
170 |
-
encoder_hidden_states = self.context_embedder(encoder_hidden_states)
|
171 |
-
|
172 |
-
if txt_ids.ndim == 3:
|
173 |
-
logger.warning(
|
174 |
-
"Passing `txt_ids` 3d torch.Tensor is deprecated."
|
175 |
-
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
176 |
-
)
|
177 |
-
txt_ids = txt_ids[0]
|
178 |
-
if img_ids.ndim == 3:
|
179 |
-
logger.warning(
|
180 |
-
"Passing `img_ids` 3d torch.Tensor is deprecated."
|
181 |
-
"Please remove the batch dimension and pass it as a 2d torch Tensor"
|
182 |
-
)
|
183 |
-
img_ids = img_ids[0]
|
184 |
-
|
185 |
-
ids = torch.cat((txt_ids, img_ids), dim=0)
|
186 |
-
image_rotary_emb = self.pos_embed(ids)
|
187 |
-
if use_condition:
|
188 |
-
cond_rotary_emb = self.pos_embed(condition_ids)
|
189 |
-
|
190 |
-
for index_block, block in enumerate(self.transformer_blocks):
|
191 |
-
if delta_emb_pblock is None:
|
192 |
-
delta_emb_cblock = None
|
193 |
-
else:
|
194 |
-
delta_emb_cblock = delta_emb_pblock[:, :, index_block]
|
195 |
-
condition_pass_to_double = use_condition and (model_config["double_use_condition"] or model_config["single_use_condition"])
|
196 |
-
if self.training and self.gradient_checkpointing:
|
197 |
-
ckpt_kwargs: Dict[str, Any] = (
|
198 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
199 |
-
)
|
200 |
-
|
201 |
-
encoder_hidden_states, hidden_states, condition_latents = (
|
202 |
-
torch.utils.checkpoint.checkpoint(
|
203 |
-
block_forward,
|
204 |
-
self=block,
|
205 |
-
model_config=model_config,
|
206 |
-
hidden_states=hidden_states,
|
207 |
-
encoder_hidden_states=encoder_hidden_states,
|
208 |
-
condition_latents=condition_latents if condition_pass_to_double else None,
|
209 |
-
cond_temb=cond_temb if condition_pass_to_double else None,
|
210 |
-
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None,
|
211 |
-
temb=temb,
|
212 |
-
text_cond_mask=text_cond_mask,
|
213 |
-
delta_emb=delta_emb,
|
214 |
-
delta_emb_cblock=delta_emb_cblock,
|
215 |
-
delta_emb_mask=delta_emb_mask,
|
216 |
-
delta_start_ends=delta_start_ends,
|
217 |
-
image_rotary_emb=image_rotary_emb,
|
218 |
-
store_attn_map=store_attn_map,
|
219 |
-
use_text_mod=use_text_mod,
|
220 |
-
use_img_mod=use_img_mod,
|
221 |
-
mod_adapter=mod_adapter,
|
222 |
-
latent_height=latent_height,
|
223 |
-
timestep=timestep,
|
224 |
-
last_attn_map=last_attn_map,
|
225 |
-
**ckpt_kwargs,
|
226 |
-
)
|
227 |
-
)
|
228 |
-
|
229 |
-
else:
|
230 |
-
encoder_hidden_states, hidden_states, condition_latents = block_forward(
|
231 |
-
block,
|
232 |
-
model_config=model_config,
|
233 |
-
hidden_states=hidden_states,
|
234 |
-
encoder_hidden_states=encoder_hidden_states,
|
235 |
-
condition_latents=condition_latents if condition_pass_to_double else None,
|
236 |
-
cond_temb=cond_temb if condition_pass_to_double else None,
|
237 |
-
cond_rotary_emb=cond_rotary_emb if condition_pass_to_double else None,
|
238 |
-
temb=temb,
|
239 |
-
text_cond_mask=text_cond_mask,
|
240 |
-
delta_emb=delta_emb,
|
241 |
-
delta_emb_cblock=delta_emb_cblock,
|
242 |
-
delta_emb_mask=delta_emb_mask,
|
243 |
-
delta_start_ends=delta_start_ends,
|
244 |
-
image_rotary_emb=image_rotary_emb,
|
245 |
-
store_attn_map=store_attn_map,
|
246 |
-
use_text_mod=use_text_mod,
|
247 |
-
use_img_mod=use_img_mod,
|
248 |
-
mod_adapter=mod_adapter,
|
249 |
-
latent_height=latent_height,
|
250 |
-
timestep=timestep,
|
251 |
-
last_attn_map=last_attn_map,
|
252 |
-
)
|
253 |
-
|
254 |
-
# controlnet residual
|
255 |
-
if controlnet_block_samples is not None:
|
256 |
-
interval_control = len(self.transformer_blocks) / len(
|
257 |
-
controlnet_block_samples
|
258 |
-
)
|
259 |
-
interval_control = int(np.ceil(interval_control))
|
260 |
-
hidden_states = (
|
261 |
-
hidden_states
|
262 |
-
+ controlnet_block_samples[index_block // interval_control]
|
263 |
-
)
|
264 |
-
hidden_states = torch.cat([encoder_hidden_states, hidden_states], dim=1)
|
265 |
-
|
266 |
-
for index_block, block in enumerate(self.single_transformer_blocks):
|
267 |
-
if delta_emb_pblock is not None and delta_emb_pblock.shape[2] > 19+index_block:
|
268 |
-
delta_emb_single = delta_emb
|
269 |
-
delta_emb_cblock = delta_emb_pblock[:, :, index_block+19]
|
270 |
-
else:
|
271 |
-
delta_emb_single = None
|
272 |
-
delta_emb_cblock = None
|
273 |
-
if self.training and self.gradient_checkpointing:
|
274 |
-
ckpt_kwargs: Dict[str, Any] = (
|
275 |
-
{"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {}
|
276 |
-
)
|
277 |
-
result = torch.utils.checkpoint.checkpoint(
|
278 |
-
single_block_forward,
|
279 |
-
self=block,
|
280 |
-
model_config=model_config,
|
281 |
-
hidden_states=hidden_states,
|
282 |
-
temb=temb,
|
283 |
-
delta_emb=delta_emb_single,
|
284 |
-
delta_emb_cblock=delta_emb_cblock,
|
285 |
-
delta_emb_mask=delta_emb_mask,
|
286 |
-
use_text_mod=use_text_mod,
|
287 |
-
use_img_mod=use_img_mod,
|
288 |
-
image_rotary_emb=image_rotary_emb,
|
289 |
-
last_attn_map=last_attn_map,
|
290 |
-
latent_height=latent_height,
|
291 |
-
timestep=timestep,
|
292 |
-
store_attn_map=store_attn_map,
|
293 |
-
**(
|
294 |
-
{
|
295 |
-
"condition_latents": condition_latents,
|
296 |
-
"cond_temb": cond_temb,
|
297 |
-
"cond_rotary_emb": cond_rotary_emb,
|
298 |
-
"text_cond_mask": text_cond_mask,
|
299 |
-
}
|
300 |
-
if use_condition and model_config["single_use_condition"]
|
301 |
-
else {}
|
302 |
-
),
|
303 |
-
**ckpt_kwargs,
|
304 |
-
)
|
305 |
-
|
306 |
-
else:
|
307 |
-
result = single_block_forward(
|
308 |
-
block,
|
309 |
-
model_config=model_config,
|
310 |
-
hidden_states=hidden_states,
|
311 |
-
temb=temb,
|
312 |
-
delta_emb=delta_emb_single,
|
313 |
-
delta_emb_cblock=delta_emb_cblock,
|
314 |
-
delta_emb_mask=delta_emb_mask,
|
315 |
-
use_text_mod=use_text_mod,
|
316 |
-
use_img_mod=use_img_mod,
|
317 |
-
image_rotary_emb=image_rotary_emb,
|
318 |
-
last_attn_map=last_attn_map,
|
319 |
-
latent_height=latent_height,
|
320 |
-
timestep=timestep,
|
321 |
-
store_attn_map=store_attn_map,
|
322 |
-
latent_sblora_weight=latent_sblora_weight,
|
323 |
-
condition_sblora_weight=condition_sblora_weight,
|
324 |
-
**(
|
325 |
-
{
|
326 |
-
"condition_latents": condition_latents,
|
327 |
-
"cond_temb": cond_temb,
|
328 |
-
"cond_rotary_emb": cond_rotary_emb,
|
329 |
-
"text_cond_mask": text_cond_mask,
|
330 |
-
}
|
331 |
-
if use_condition and model_config["single_use_condition"]
|
332 |
-
else {}
|
333 |
-
),
|
334 |
-
)
|
335 |
-
if use_condition and model_config["single_use_condition"]:
|
336 |
-
hidden_states, condition_latents = result
|
337 |
-
else:
|
338 |
-
hidden_states = result
|
339 |
-
|
340 |
-
# controlnet residual
|
341 |
-
if controlnet_single_block_samples is not None:
|
342 |
-
interval_control = len(self.single_transformer_blocks) / len(
|
343 |
-
controlnet_single_block_samples
|
344 |
-
)
|
345 |
-
interval_control = int(np.ceil(interval_control))
|
346 |
-
hidden_states[:, encoder_hidden_states.shape[1] :, ...] = (
|
347 |
-
hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
348 |
-
+ controlnet_single_block_samples[index_block // interval_control]
|
349 |
-
)
|
350 |
-
|
351 |
-
hidden_states = hidden_states[:, encoder_hidden_states.shape[1] :, ...]
|
352 |
-
|
353 |
-
hidden_states = self.norm_out(hidden_states, temb)
|
354 |
-
output = self.proj_out(hidden_states)
|
355 |
-
|
356 |
-
if USE_PEFT_BACKEND:
|
357 |
-
# remove `lora_scale` from each PEFT layer
|
358 |
-
unscale_lora_layers(self, lora_scale)
|
359 |
-
|
360 |
-
if not return_dict:
|
361 |
-
return (output,)
|
362 |
-
return Transformer2DModelOutput(sample=output)
|
363 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils/data_utils.py
DELETED
@@ -1,404 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
#
|
3 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
-
# you may not use this file except in compliance with the License.
|
5 |
-
# You may obtain a copy of the License at
|
6 |
-
#
|
7 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
-
#
|
9 |
-
# Unless required by applicable law or agreed to in writing, software
|
10 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
-
# See the License for the specific language governing permissions and
|
13 |
-
# limitations under the License.
|
14 |
-
|
15 |
-
import cv2
|
16 |
-
import json
|
17 |
-
import torch
|
18 |
-
import random
|
19 |
-
import base64
|
20 |
-
import numpy as np
|
21 |
-
from PIL import Image, ImageDraw
|
22 |
-
from glob import glob
|
23 |
-
from torchvision import transforms as T
|
24 |
-
import os
|
25 |
-
import gc
|
26 |
-
from webdataset.filters import default_collation_fn, pipelinefilter
|
27 |
-
import yaml
|
28 |
-
|
29 |
-
def get_rank_and_worldsize():
|
30 |
-
try:
|
31 |
-
local_rank = int(os.environ.get("LOCAL_RANK"))
|
32 |
-
global_rank = int(os.environ.get("RANK"))
|
33 |
-
world_size = int(os.getenv('WORLD_SIZE', 1))
|
34 |
-
except:
|
35 |
-
local_rank = 0
|
36 |
-
global_rank = 0
|
37 |
-
world_size = 1
|
38 |
-
return local_rank, global_rank, world_size
|
39 |
-
|
40 |
-
def get_train_config(config_path=None):
|
41 |
-
if config_path is None:
|
42 |
-
config_path = os.environ.get("XFL_CONFIG")
|
43 |
-
assert config_path is not None, "Please set the XFL_CONFIG environment variable"
|
44 |
-
with open(config_path, "r") as f:
|
45 |
-
config = yaml.safe_load(f)
|
46 |
-
return config
|
47 |
-
|
48 |
-
def calculate_aspect_ratios(resolution):
|
49 |
-
ASPECT_RATIO = {
|
50 |
-
'0.25': [128.0, 512.0], '0.26': [128.0, 496.0], '0.27': [128.0, 480.0], '0.28': [128.0, 464.0],
|
51 |
-
'0.32': [144.0, 448.0], '0.33': [144.0, 432.0], '0.35': [144.0, 416.0], '0.4': [160.0, 400.0],
|
52 |
-
'0.42': [160.0, 384.0], '0.48': [176.0, 368.0], '0.5': [176.0, 352.0], '0.52': [176.0, 336.0],
|
53 |
-
'0.57': [192.0, 336.0], '0.6': [192.0, 320.0], '0.68': [208.0, 304.0], '0.72': [208.0, 288.0],
|
54 |
-
'0.78': [224.0, 288.0], '0.82': [224.0, 272.0], '0.88': [240.0, 272.0], '0.94': [240.0, 256.0],
|
55 |
-
'1.0': [256.0, 256.0], '1.07': [256.0, 240.0], '1.13': [272.0, 240.0], '1.21': [272.0, 224.0],
|
56 |
-
'1.29': [288.0, 224.0], '1.38': [288.0, 208.0], '1.46': [304.0, 208.0], '1.67': [320.0, 192.0],
|
57 |
-
'1.75': [336.0, 192.0], '2.0': [352.0, 176.0], '2.09': [368.0, 176.0], '2.4': [384.0, 160.0],
|
58 |
-
'2.5': [400.0, 160.0], '2.89': [416.0, 144.0], '3.0': [432.0, 144.0], '3.11': [448.0, 144.0],
|
59 |
-
'3.62': [464.0, 128.0], '3.75': [480.0, 128.0], '3.88': [496.0, 128.0], '4.0': [512.0, 128.0]
|
60 |
-
}
|
61 |
-
NEW_ASPECT_RATIO = {}
|
62 |
-
for ratio in ASPECT_RATIO:
|
63 |
-
height, width = ASPECT_RATIO[ratio]
|
64 |
-
width = round(width / 256 * resolution)
|
65 |
-
height = round(height / 256 * resolution)
|
66 |
-
if width % 8 != 0:
|
67 |
-
print(f"skip train resolution {width}, {height}")
|
68 |
-
continue
|
69 |
-
if height % 8 != 0:
|
70 |
-
print(f"skip train resolution {width}, {height}")
|
71 |
-
continue
|
72 |
-
NEW_ASPECT_RATIO[ratio] = [height, width]
|
73 |
-
return NEW_ASPECT_RATIO
|
74 |
-
|
75 |
-
ASPECT_RATIO_256 = calculate_aspect_ratios(256)
|
76 |
-
ASPECT_RATIO_384 = calculate_aspect_ratios(384)
|
77 |
-
ASPECT_RATIO_512 = calculate_aspect_ratios(512)
|
78 |
-
ASPECT_RATIO_768 = calculate_aspect_ratios(768)
|
79 |
-
ASPECT_RATIO_1024 = calculate_aspect_ratios(1024)
|
80 |
-
|
81 |
-
def get_closest_ratio(height: float, width: float, ratios: dict):
|
82 |
-
aspect_ratio = height / width
|
83 |
-
closest_ratio = min(ratios.keys(), key=lambda ratio: abs(float(ratio) - aspect_ratio))
|
84 |
-
return ratios[closest_ratio], closest_ratio
|
85 |
-
|
86 |
-
|
87 |
-
def _aspect_ratio_batched(
|
88 |
-
data,
|
89 |
-
batchsize=20,
|
90 |
-
aspect_ratios=ASPECT_RATIO_512,
|
91 |
-
batch_cross=False,
|
92 |
-
collation_fn=default_collation_fn,
|
93 |
-
partial=True,
|
94 |
-
):
|
95 |
-
"""Create batches of the given size.
|
96 |
-
|
97 |
-
:param data: iterator
|
98 |
-
:param batchsize: target batch size
|
99 |
-
:param tensors: automatically batch lists of ndarrays into ndarrays
|
100 |
-
:param partial: return partial batches
|
101 |
-
:returns: iterator
|
102 |
-
|
103 |
-
"""
|
104 |
-
assert collation_fn is not None
|
105 |
-
buckets = {
|
106 |
-
ratio: {"cross": [], "no_cross": []} for ratio in aspect_ratios.keys()
|
107 |
-
}
|
108 |
-
|
109 |
-
def check(buckets):
|
110 |
-
for ratio in buckets:
|
111 |
-
for bucket_name in buckets[ratio]:
|
112 |
-
bucket = buckets[ratio][bucket_name]
|
113 |
-
assert len(bucket) < batchsize
|
114 |
-
|
115 |
-
for sample in data:
|
116 |
-
check(buckets)
|
117 |
-
height, width = sample['original_sizes']
|
118 |
-
(new_height, new_width), closest_ratio = get_closest_ratio(height, width, aspect_ratios)
|
119 |
-
|
120 |
-
bucket_name = "cross" if sample["has_cross"] and batch_cross else "no_cross"
|
121 |
-
bucket = buckets[closest_ratio][bucket_name]
|
122 |
-
bucket.append(sample)
|
123 |
-
|
124 |
-
if len(bucket) >= batchsize:
|
125 |
-
try:
|
126 |
-
batch = collation_fn(bucket)
|
127 |
-
yield batch
|
128 |
-
del batch
|
129 |
-
except Exception as e:
|
130 |
-
print(f"[aspect_ratio_batched] collation_fn batch failed due to error {e}")
|
131 |
-
for sample in bucket:
|
132 |
-
if "__key__" in sample:
|
133 |
-
print("error sample key in batch:", sample["__key__"])
|
134 |
-
if "__url__" in sample:
|
135 |
-
print("error sample url in batch:", sample["__url__"])
|
136 |
-
buckets[closest_ratio][bucket_name] = []
|
137 |
-
del bucket
|
138 |
-
gc.collect()
|
139 |
-
|
140 |
-
# yield the rest data and reset the buckets
|
141 |
-
for ratio in buckets.keys():
|
142 |
-
for bucket_name in ["cross", "no_cross"]:
|
143 |
-
bucket = buckets[ratio][bucket_name]
|
144 |
-
if len(bucket) > 0:
|
145 |
-
if len(bucket) == batchsize or partial:
|
146 |
-
batch = collation_fn(bucket)
|
147 |
-
yield batch
|
148 |
-
del batch
|
149 |
-
buckets[ratio][bucket_name] = []
|
150 |
-
del bucket
|
151 |
-
|
152 |
-
aspect_ratio_batched = pipelinefilter(_aspect_ratio_batched)
|
153 |
-
|
154 |
-
def apply_aspect_ratio_batched(dataset, batchsize, aspect_ratios, batch_cross, collation_fn, partial=True):
|
155 |
-
return dataset.compose(
|
156 |
-
aspect_ratio_batched(
|
157 |
-
batchsize,
|
158 |
-
aspect_ratios=aspect_ratios,
|
159 |
-
batch_cross=batch_cross,
|
160 |
-
collation_fn=collation_fn,
|
161 |
-
partial=partial
|
162 |
-
)
|
163 |
-
)
|
164 |
-
|
165 |
-
def get_aspect_ratios(enable_aspect_ratio, resolution):
|
166 |
-
if enable_aspect_ratio:
|
167 |
-
# print("[Dataset] Multi Aspect Ratio Training Enabled")
|
168 |
-
if resolution == 256:
|
169 |
-
aspect_ratios = ASPECT_RATIO_256
|
170 |
-
elif resolution == 384:
|
171 |
-
aspect_ratios = ASPECT_RATIO_384
|
172 |
-
elif resolution == 512:
|
173 |
-
aspect_ratios = ASPECT_RATIO_512
|
174 |
-
elif resolution == 768:
|
175 |
-
aspect_ratios = ASPECT_RATIO_768
|
176 |
-
elif resolution == 1024:
|
177 |
-
aspect_ratios = ASPECT_RATIO_1024
|
178 |
-
else:
|
179 |
-
aspect_ratios = calculate_aspect_ratios(resolution)
|
180 |
-
else:
|
181 |
-
# print("[Dataset] Multi Aspect Ratio Training Disabled")
|
182 |
-
aspect_ratios = {
|
183 |
-
'1.0': [resolution, resolution]
|
184 |
-
}
|
185 |
-
return aspect_ratios
|
186 |
-
|
187 |
-
def bbox_to_grid(bbox, image_size, output_size=(224, 224)):
|
188 |
-
"""
|
189 |
-
Convert bounding box to a grid of points.
|
190 |
-
Args:
|
191 |
-
bbox (list of float): [xmin, ymin, xmax, ymax]
|
192 |
-
output_size (tuple of int): (height, width) of the output grid
|
193 |
-
|
194 |
-
Returns:
|
195 |
-
torch.Tensor: Grid of points with shape (output_height, output_width, 2)
|
196 |
-
"""
|
197 |
-
xmin, ymin, xmax, ymax = bbox
|
198 |
-
|
199 |
-
# Create a meshgrid for the output grid
|
200 |
-
h, w = output_size
|
201 |
-
yy, xx = torch.meshgrid(
|
202 |
-
torch.linspace(ymin, ymax, h),
|
203 |
-
torch.linspace(xmin, xmax, w)
|
204 |
-
)
|
205 |
-
grid = torch.stack((xx, yy), -1)
|
206 |
-
|
207 |
-
# Normalize grid to range [-1, 1]
|
208 |
-
H, W = image_size
|
209 |
-
grid[..., 0] = grid[..., 0] / (W - 1) * 2 - 1 # Normalize x to [-1, 1]
|
210 |
-
grid[..., 1] = grid[..., 1] / (H - 1) * 2 - 1 # Normalize y to [-1, 1]
|
211 |
-
|
212 |
-
return grid
|
213 |
-
|
214 |
-
def random_crop_instance(instance, min_crop_ratio):
|
215 |
-
assert 0 < min_crop_ratio <= 1
|
216 |
-
crop_width_ratio = random.uniform(min_crop_ratio, 1)
|
217 |
-
crop_height_ratio = random.uniform(min_crop_ratio, 1)
|
218 |
-
|
219 |
-
orig_width, orig_height = instance.size
|
220 |
-
|
221 |
-
crop_width = int(orig_width * crop_width_ratio)
|
222 |
-
crop_height = int(orig_height * crop_height_ratio)
|
223 |
-
|
224 |
-
crop_left = random.randint(0, orig_width - crop_width)
|
225 |
-
crop_top = random.randint(0, orig_height - crop_height)
|
226 |
-
|
227 |
-
crop_box = (crop_left, crop_top, crop_left + crop_width, crop_top + crop_height) # (left, upper, right, lower)
|
228 |
-
return instance.crop(crop_box), crop_box
|
229 |
-
|
230 |
-
pil2tensor = T.ToTensor()
|
231 |
-
tensor2pil = T.ToPILImage()
|
232 |
-
|
233 |
-
cv2pil = lambda x: Image.fromarray(cv2.cvtColor(x, cv2.COLOR_BGR2RGB))
|
234 |
-
pil2cv2 = lambda x: cv2.cvtColor(np.array(x), cv2.COLOR_RGB2BGR)
|
235 |
-
|
236 |
-
def compute_psnr(x, y):
|
237 |
-
y = y.resize(x.size)
|
238 |
-
x = pil2tensor(x) * 255.
|
239 |
-
y = pil2tensor(y) * 255.
|
240 |
-
mse = torch.mean((x - y) ** 2)
|
241 |
-
return 20 * torch.log10(255.0 / torch.sqrt(mse)).item()
|
242 |
-
|
243 |
-
def replace_first_occurrence(sentence, word_or_phrase, replace_with):
|
244 |
-
# Escape special characters in word_or_phrase for exact matching
|
245 |
-
escaped_word_or_phrase = re.escape(word_or_phrase)
|
246 |
-
pattern = r'\b' + escaped_word_or_phrase + r'\b'
|
247 |
-
|
248 |
-
# Finding the first match
|
249 |
-
match = next(re.finditer(pattern, sentence), None)
|
250 |
-
if match:
|
251 |
-
# Perform replacement
|
252 |
-
result = re.sub(pattern, replace_with, sentence, count=1)
|
253 |
-
replaced = True
|
254 |
-
index = match.start()
|
255 |
-
else:
|
256 |
-
# No match found
|
257 |
-
result = sentence
|
258 |
-
replaced = False
|
259 |
-
index = -1
|
260 |
-
|
261 |
-
return result, replaced, index
|
262 |
-
|
263 |
-
|
264 |
-
def decode_base64_to_image(base64_str):
|
265 |
-
# Decode the base64 string to bytes
|
266 |
-
img_bytes = base64.b64decode(base64_str)
|
267 |
-
# Create a BytesIO buffer from the bytes
|
268 |
-
img_buffer = io.BytesIO(img_bytes)
|
269 |
-
# Open the image using Pillow
|
270 |
-
image = Image.open(img_buffer)
|
271 |
-
return image
|
272 |
-
|
273 |
-
def jpeg_compression(pil_image, quality):
|
274 |
-
buffer = io.BytesIO()
|
275 |
-
pil_image.save(buffer, format="JPEG", quality=quality)
|
276 |
-
return Image.open(io.BytesIO(buffer.getvalue()))
|
277 |
-
|
278 |
-
def pad_to_square(pil_image):
|
279 |
-
new_size = max(pil_image.width, pil_image.height)
|
280 |
-
square_image = Image.new("RGB", (new_size, new_size), "white")
|
281 |
-
left = (new_size - pil_image.width) // 2
|
282 |
-
top = (new_size - pil_image.height) // 2
|
283 |
-
square_image.paste(pil_image, (left, top))
|
284 |
-
return square_image
|
285 |
-
|
286 |
-
def pad_to_target(pil_image, target_size):
|
287 |
-
original_width, original_height = pil_image.size
|
288 |
-
target_width, target_height = target_size
|
289 |
-
|
290 |
-
original_aspect_ratio = original_width / original_height
|
291 |
-
target_aspect_ratio = target_width / target_height
|
292 |
-
|
293 |
-
# Pad the image to the target aspect ratio
|
294 |
-
if original_aspect_ratio > target_aspect_ratio:
|
295 |
-
new_width = original_width
|
296 |
-
new_height = int(new_width / target_aspect_ratio)
|
297 |
-
else:
|
298 |
-
new_height = original_height
|
299 |
-
new_width = int(new_height * target_aspect_ratio)
|
300 |
-
|
301 |
-
pad_image = Image.new("RGB", (new_width, new_height), "white")
|
302 |
-
left = (new_width - original_width) // 2
|
303 |
-
top = (new_height - original_height) // 2
|
304 |
-
pad_image.paste(pil_image, (left, top))
|
305 |
-
|
306 |
-
# Resize the image to the target size
|
307 |
-
resized_image = pad_image.resize(target_size)
|
308 |
-
return resized_image
|
309 |
-
|
310 |
-
def image_grid(imgs, rows, cols):
|
311 |
-
# assert len(imgs) == rows * cols
|
312 |
-
|
313 |
-
w, h = imgs[0].size
|
314 |
-
if imgs[0].mode == 'L':
|
315 |
-
grid = Image.new('L', size=(cols * w, rows * h))
|
316 |
-
else:
|
317 |
-
grid = Image.new('RGB', size=(cols * w, rows * h))
|
318 |
-
|
319 |
-
for i, img in enumerate(imgs):
|
320 |
-
grid.paste(img, box=(i % cols * w, i // cols * h))
|
321 |
-
return grid
|
322 |
-
|
323 |
-
def split_grid(image):
|
324 |
-
width = image.width // 2
|
325 |
-
height = image.height // 2
|
326 |
-
|
327 |
-
crop_tuples_list = [
|
328 |
-
(0, 0, width, height),
|
329 |
-
(width, 0, width*2, height),
|
330 |
-
(0, height, width, height*2),
|
331 |
-
(width, height, width*2, height*2),
|
332 |
-
]
|
333 |
-
def crop_image(input_image, crop_tuple=None):
|
334 |
-
if crop_tuple is None:
|
335 |
-
return input_image
|
336 |
-
return input_image.crop((crop_tuple[0], crop_tuple[1], crop_tuple[2], crop_tuple[3]))
|
337 |
-
|
338 |
-
return [crop_image(image, crop_tuple) for crop_tuple in crop_tuples_list]
|
339 |
-
|
340 |
-
def add_border(img, border_color, border_thickness):
|
341 |
-
"""
|
342 |
-
Add a colored border to an image without changing its size.
|
343 |
-
|
344 |
-
Parameters:
|
345 |
-
border_color (tuple): Border color in RGB (e.g., (255, 0, 0) for red).
|
346 |
-
border_thickness (int): Thickness of the border in pixels.
|
347 |
-
"""
|
348 |
-
width, height = img.size
|
349 |
-
img = img.copy()
|
350 |
-
draw = ImageDraw.Draw(img)
|
351 |
-
draw.rectangle((0, 0, width, border_thickness), fill=border_color)
|
352 |
-
draw.rectangle((0, height - border_thickness, width, height), fill=border_color)
|
353 |
-
draw.rectangle((0, 0, border_thickness, height), fill=border_color)
|
354 |
-
draw.rectangle((width - border_thickness, 0, width, height), fill=border_color)
|
355 |
-
return img
|
356 |
-
|
357 |
-
def merge_bboxes(bboxes):
|
358 |
-
if not bboxes:
|
359 |
-
return None # Handle empty input
|
360 |
-
|
361 |
-
# Extract all coordinates
|
362 |
-
x_mins = [b[0] for b in bboxes]
|
363 |
-
y_mins = [b[1] for b in bboxes]
|
364 |
-
x_maxs = [b[2] for b in bboxes]
|
365 |
-
y_maxs = [b[3] for b in bboxes]
|
366 |
-
|
367 |
-
# Compute the merged box
|
368 |
-
merged_box = (
|
369 |
-
min(x_mins), # x_min
|
370 |
-
min(y_mins), # y_min
|
371 |
-
max(x_maxs), # x_max
|
372 |
-
max(y_maxs) # y_max
|
373 |
-
)
|
374 |
-
return merged_box
|
375 |
-
|
376 |
-
|
377 |
-
def flip_bbox_left_right(bbox, image_width):
|
378 |
-
"""
|
379 |
-
Flips the bounding box horizontally on an image.
|
380 |
-
|
381 |
-
Parameters:
|
382 |
-
bbox (list of float): [x_min, y_min, x_max, y_max]
|
383 |
-
image_width (int): The width of the image
|
384 |
-
|
385 |
-
Returns:
|
386 |
-
list of float: New bounding box after horizontal flip [x_min', y_min', x_max', y_max']
|
387 |
-
"""
|
388 |
-
x_min, y_min, x_max, y_max = bbox
|
389 |
-
new_x_min = image_width - x_max
|
390 |
-
new_x_max = image_width - x_min
|
391 |
-
new_bbox = [new_x_min, y_min, new_x_max, y_max]
|
392 |
-
return new_bbox
|
393 |
-
|
394 |
-
def json_load(path, encoding='ascii'):
|
395 |
-
with open(path, 'r', encoding=encoding) as file:
|
396 |
-
return json.load(file)
|
397 |
-
|
398 |
-
def json_dump(obj, path, encoding='ascii', indent=4, create_dir=True, verbose=True, **kwargs):
|
399 |
-
if create_dir and os.path.dirname(path) != '':
|
400 |
-
os.makedirs(os.path.dirname(path), exist_ok=True)
|
401 |
-
with open(path, 'w', encoding=encoding) as file:
|
402 |
-
json.dump(obj, file, indent=4, ensure_ascii=False, **kwargs)
|
403 |
-
if verbose:
|
404 |
-
print(type(obj), 'saved to', path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/utils/modulation_utils.py
DELETED
@@ -1,55 +0,0 @@
|
|
1 |
-
# Copyright (c) 2025 Bytedance Ltd. and/or its affiliates
|
2 |
-
# Copyright (c) Facebook, Inc. All rights reserved.
|
3 |
-
#
|
4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
5 |
-
# you may not use this file except in compliance with the License.
|
6 |
-
# You may obtain a copy of the License at
|
7 |
-
#
|
8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
9 |
-
#
|
10 |
-
# Unless required by applicable law or agreed to in writing, software
|
11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
13 |
-
# See the License for the specific language governing permissions and
|
14 |
-
# limitations under the License.
|
15 |
-
|
16 |
-
import torch
|
17 |
-
from src.flux.pipeline_tools import tokenize_t5_prompt
|
18 |
-
|
19 |
-
def unpad_input_ids(input_ids, attention_mask):
|
20 |
-
return [input_ids[i][attention_mask[i].bool()][:-1] for i in range(input_ids.shape[0])]
|
21 |
-
|
22 |
-
def get_word_index(pipe, prompt, input_ids, word, word_count=1, max_length=512, verbose=True, reverse=False):
|
23 |
-
word_inputs = tokenize_t5_prompt(pipe, word, max_length)
|
24 |
-
word_ids = unpad_input_ids(word_inputs.input_ids, word_inputs.attention_mask)[0]
|
25 |
-
if word_ids[0] == 3:
|
26 |
-
word_ids = word_ids[1:] # remove prefix space
|
27 |
-
|
28 |
-
if verbose:
|
29 |
-
print(f"Trying to find {word} {word_ids.tolist()} in {input_ids.tolist()} where")
|
30 |
-
print([(i, pipe.tokenizer_2.decode(input_ids[i])) for i in range(input_ids.shape[0])])
|
31 |
-
|
32 |
-
count = 0
|
33 |
-
if reverse:
|
34 |
-
for i in range(input_ids.shape[0] - word_ids.shape[0],-1,-1):
|
35 |
-
if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids):
|
36 |
-
count += 1
|
37 |
-
if count == word_count:
|
38 |
-
if verbose:
|
39 |
-
reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]])
|
40 |
-
assert reconstructed_word == word
|
41 |
-
print(f"[Reverse] Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'")
|
42 |
-
print("Reconstructed word", reconstructed_word)
|
43 |
-
return i, i + word_ids.shape[0]
|
44 |
-
else:
|
45 |
-
for i in range(input_ids.shape[0] - word_ids.shape[0] + 1):
|
46 |
-
if torch.equal(input_ids[i:i+word_ids.shape[0]], word_ids):
|
47 |
-
count += 1
|
48 |
-
if count == word_count:
|
49 |
-
if verbose:
|
50 |
-
reconstructed_word = pipe.tokenizer_2.decode(input_ids[i:i+word_ids.shape[0]])
|
51 |
-
assert reconstructed_word == word
|
52 |
-
print(f"Found index {i} to {i+word_ids.shape[0]} for '{word}' in prompt '{prompt}'")
|
53 |
-
print("Reconstructed word", reconstructed_word)
|
54 |
-
return i, i + word_ids.shape[0]
|
55 |
-
print(f"[Error] Could not find '{word}' in prompt '{prompt}' with word_count {word_count}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|