Spaces:
Runtime error
Runtime error
| import torch | |
| from torchtext.data.utils import get_tokenizer | |
| from model_arch import TextClassifierModel, load_state_dict | |
| model_trained = torch.load('model_checkpoint.pth') | |
| vocab = torch.load('vocab.pt') | |
| tokenizer = get_tokenizer("spacy", language="es") | |
| text_pipeline = lambda x: vocab(tokenizer(x)) | |
| num_class = 11 | |
| vocab_size = len(vocab) | |
| embed_size = 300 | |
| model = TextClassifierModel(vocab_size, embed_size, num_class) | |
| model = load_state_dict(model, model_trained, vocab) | |
| def predict(text, model=model, text_pipeline=text_pipeline): | |
| with torch.no_grad() | |
| model.eval() | |
| text_tensor = torch.tensor(text_pipeline(text)) | |
| return model(text_tensor, torch.tensor([0])).argmax(1).item() | |