Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,24 +5,19 @@ import logging
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
-
from diffusers import DiffusionPipeline
|
| 9 |
-
from live_preview_helpers import calculate_shift, retrieve_timesteps, flux_pipe_call_that_returns_an_iterable_of_images
|
| 10 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 11 |
import copy
|
| 12 |
import random
|
| 13 |
import time
|
| 14 |
|
| 15 |
-
dtype = torch.bfloat16
|
| 16 |
-
device = "cuda"
|
| 17 |
-
|
| 18 |
# Load LoRAs from JSON file
|
| 19 |
with open('loras.json', 'r') as f:
|
| 20 |
loras = json.load(f)
|
| 21 |
|
| 22 |
# Initialize the base model
|
| 23 |
-
|
| 24 |
-
pipe = DiffusionPipeline.from_pretrained(
|
| 25 |
-
torch.cuda.empty_cache()
|
| 26 |
|
| 27 |
MAX_SEED = 2**32-1
|
| 28 |
|
|
@@ -65,22 +60,20 @@ def update_selection(evt: gr.SelectData, width, height):
|
|
| 65 |
@spaces.GPU(duration=70)
|
| 66 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 67 |
pipe.to("cuda")
|
| 68 |
-
if randomize_seed:
|
| 69 |
-
seed = random.randint(0, MAX_SEED)
|
| 70 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 71 |
|
| 72 |
with calculateDuration("Generating image"):
|
| 73 |
-
|
|
|
|
| 74 |
prompt=prompt_mash,
|
| 75 |
num_inference_steps=steps,
|
|
|
|
| 76 |
width=width,
|
| 77 |
height=height,
|
| 78 |
-
|
| 79 |
-
#generator=generator,
|
| 80 |
-
output_type="pil",
|
| 81 |
joint_attention_kwargs={"scale": lora_scale},
|
| 82 |
-
)
|
| 83 |
-
|
| 84 |
|
| 85 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 86 |
if selected_index is None:
|
|
|
|
| 5 |
import torch
|
| 6 |
from PIL import Image
|
| 7 |
import spaces
|
| 8 |
+
from diffusers import DiffusionPipeline
|
|
|
|
| 9 |
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
|
| 10 |
import copy
|
| 11 |
import random
|
| 12 |
import time
|
| 13 |
|
|
|
|
|
|
|
|
|
|
| 14 |
# Load LoRAs from JSON file
|
| 15 |
with open('loras.json', 'r') as f:
|
| 16 |
loras = json.load(f)
|
| 17 |
|
| 18 |
# Initialize the base model
|
| 19 |
+
base_model = "black-forest-labs/FLUX.1-dev"
|
| 20 |
+
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=torch.bfloat16)
|
|
|
|
| 21 |
|
| 22 |
MAX_SEED = 2**32-1
|
| 23 |
|
|
|
|
| 60 |
@spaces.GPU(duration=70)
|
| 61 |
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, progress):
|
| 62 |
pipe.to("cuda")
|
|
|
|
|
|
|
| 63 |
generator = torch.Generator(device="cuda").manual_seed(seed)
|
| 64 |
|
| 65 |
with calculateDuration("Generating image"):
|
| 66 |
+
# Generate image
|
| 67 |
+
image = pipe(
|
| 68 |
prompt=prompt_mash,
|
| 69 |
num_inference_steps=steps,
|
| 70 |
+
guidance_scale=cfg_scale,
|
| 71 |
width=width,
|
| 72 |
height=height,
|
| 73 |
+
generator=generator,
|
|
|
|
|
|
|
| 74 |
joint_attention_kwargs={"scale": lora_scale},
|
| 75 |
+
).images[0]
|
| 76 |
+
return image
|
| 77 |
|
| 78 |
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height, lora_scale, progress=gr.Progress(track_tqdm=True)):
|
| 79 |
if selected_index is None:
|