Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -67,6 +67,7 @@ def preprocess(text):
|
|
67 |
text = ' '.join([lemmatizer.lemmatize(word) for word in text.split() if word not in stop_words]) # lemmatizācija
|
68 |
return text
|
69 |
|
|
|
70 |
# Classification function (single model)
|
71 |
def classify_email_single_model(text, model_name):
|
72 |
text = preprocess(text)
|
@@ -74,15 +75,22 @@ def classify_email_single_model(text, model_name):
|
|
74 |
with torch.no_grad():
|
75 |
outputs = models[model_name](**inputs)
|
76 |
prediction = torch.argmax(outputs.logits, dim=1).item()
|
77 |
-
|
|
|
|
|
|
|
78 |
|
|
|
79 |
# Classification function (all models together)
|
80 |
def classify_email(text):
|
81 |
votes = {"Safe": 0, "Spam": 0, "Phishing": 0}
|
|
|
82 |
|
83 |
for model_name in model_names:
|
84 |
-
|
|
|
85 |
votes[vote] += 1
|
|
|
86 |
|
87 |
|
88 |
response = ""
|
@@ -92,8 +100,14 @@ def classify_email(text):
|
|
92 |
if i != 3:
|
93 |
response += f"{label}: {vote_count} {vote_or_votes}, "
|
94 |
else:
|
95 |
-
response += f"{label}: {vote_count} {vote_or_votes}"
|
96 |
i += 1
|
|
|
|
|
|
|
|
|
|
|
|
|
97 |
|
98 |
return response
|
99 |
|
|
|
67 |
text = ' '.join([lemmatizer.lemmatize(word) for word in text.split() if word not in stop_words]) # lemmatizācija
|
68 |
return text
|
69 |
|
70 |
+
|
71 |
# Classification function (single model)
|
72 |
def classify_email_single_model(text, model_name):
|
73 |
text = preprocess(text)
|
|
|
75 |
with torch.no_grad():
|
76 |
outputs = models[model_name](**inputs)
|
77 |
prediction = torch.argmax(outputs.logits, dim=1).item()
|
78 |
+
probs = F.softmax(logits, dim=1)
|
79 |
+
probs_percent = probs.cpu().numpy() * 100
|
80 |
+
response = {"prediction": labels[prediction], "probabilities": probs_percent}
|
81 |
+
return response
|
82 |
|
83 |
+
|
84 |
# Classification function (all models together)
|
85 |
def classify_email(text):
|
86 |
votes = {"Safe": 0, "Spam": 0, "Phishing": 0}
|
87 |
+
probabilities = {}
|
88 |
|
89 |
for model_name in model_names:
|
90 |
+
response = classify_email_single_model(text, model_name)
|
91 |
+
vote = response['prediction']
|
92 |
votes[vote] += 1
|
93 |
+
probabilities[model_name] = response['probabilities']
|
94 |
|
95 |
|
96 |
response = ""
|
|
|
100 |
if i != 3:
|
101 |
response += f"{label}: {vote_count} {vote_or_votes}, "
|
102 |
else:
|
103 |
+
response += f"{label}: {vote_count} {vote_or_votes}\n"
|
104 |
i += 1
|
105 |
+
|
106 |
+
for model_name in model_names:
|
107 |
+
response += f"{model_name}: "
|
108 |
+
for j, prob in enumerate(probabilities[model_name]):
|
109 |
+
response += f"{num_to_label[j]}: {prob:.2f}%"
|
110 |
+
response += "\n"
|
111 |
|
112 |
return response
|
113 |
|