20250312 add app
Browse files- app.py +982 -0
- requirements.txt +7 -0
app.py
ADDED
@@ -0,0 +1,982 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
import numpy as np
|
3 |
+
import json
|
4 |
+
import colorsys
|
5 |
+
import folium
|
6 |
+
import gradio as gr
|
7 |
+
from datetime import datetime
|
8 |
+
import os
|
9 |
+
from functools import lru_cache
|
10 |
+
import geopandas as gpd
|
11 |
+
from shapely.geometry import Point
|
12 |
+
from folium import plugins
|
13 |
+
import zipfile
|
14 |
+
import tempfile
|
15 |
+
import shutil
|
16 |
+
|
17 |
+
SEED = 42
|
18 |
+
|
19 |
+
# Initialize global variables
|
20 |
+
df = None
|
21 |
+
cluster_df = None
|
22 |
+
regions_gdf = None
|
23 |
+
|
24 |
+
# Add global variable for shapefile path
|
25 |
+
current_shp_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
26 |
+
|
27 |
+
def process_upload(file_obj):
|
28 |
+
"""Process uploaded CSV file"""
|
29 |
+
global df # ์ ์ญ ๋ณ์์์ ๋ช
์
|
30 |
+
if file_obj is None:
|
31 |
+
return "No file uploaded.", None
|
32 |
+
|
33 |
+
try:
|
34 |
+
file_path = file_obj.name
|
35 |
+
file_name = os.path.basename(file_path)
|
36 |
+
_, ext = os.path.splitext(file_path)
|
37 |
+
if ext.lower() != '.csv':
|
38 |
+
return "Please upload a CSV file.", None
|
39 |
+
|
40 |
+
# Try different encodings
|
41 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
42 |
+
try:
|
43 |
+
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
|
44 |
+
# Remove rows where 'name' is null
|
45 |
+
original_len = len(temp_df)
|
46 |
+
temp_df = temp_df.dropna(subset=['name'])
|
47 |
+
rows_dropped = original_len - len(temp_df)
|
48 |
+
|
49 |
+
# Update the global df
|
50 |
+
df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
|
51 |
+
|
52 |
+
return f"File uploaded and processed successfully. {len(df)} records loaded with {encoding} encoding. {rows_dropped} rows with null names were removed.", file_name
|
53 |
+
except UnicodeDecodeError:
|
54 |
+
continue
|
55 |
+
except Exception as e:
|
56 |
+
return f"Error processing file with {encoding} encoding: {str(e)}", None
|
57 |
+
|
58 |
+
return "Could not process the file with any of the supported encodings.", None
|
59 |
+
except Exception as e:
|
60 |
+
return f"Error processing upload: {str(e)}", None
|
61 |
+
|
62 |
+
def process_cluster_upload(file_obj):
|
63 |
+
"""Process uploaded cluster CSV file"""
|
64 |
+
global cluster_df # ์ ์ญ ๋ณ์์์ ๋ช
์
|
65 |
+
if file_obj is None:
|
66 |
+
return "No cluster file uploaded.", None
|
67 |
+
|
68 |
+
try:
|
69 |
+
file_path = file_obj.name
|
70 |
+
file_name = os.path.basename(file_path)
|
71 |
+
_, ext = os.path.splitext(file_path)
|
72 |
+
if ext.lower() != '.csv':
|
73 |
+
return "Please upload a CSV file.", None
|
74 |
+
|
75 |
+
# Try different encodings
|
76 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
77 |
+
try:
|
78 |
+
temp_df = pd.read_csv(file_path, engine='python', encoding=encoding)
|
79 |
+
|
80 |
+
# Update the global cluster_df
|
81 |
+
cluster_df = temp_df # ์ ์ญ ๋ณ์ ์
๋ฐ์ดํธ
|
82 |
+
|
83 |
+
return f"Cluster file uploaded and processed successfully. {len(cluster_df)} records loaded with {encoding} encoding.", file_name
|
84 |
+
except UnicodeDecodeError:
|
85 |
+
continue
|
86 |
+
except Exception as e:
|
87 |
+
return f"Error processing cluster file with {encoding} encoding: {str(e)}", None
|
88 |
+
|
89 |
+
return "Could not process the cluster file with any of the supported encodings.", None
|
90 |
+
except Exception as e:
|
91 |
+
return f"Error processing cluster upload: {str(e)}", None
|
92 |
+
|
93 |
+
def process_shp_upload(file_obj):
|
94 |
+
"""Process uploaded shapefile ZIP"""
|
95 |
+
global regions_gdf, current_shp_path
|
96 |
+
if file_obj is None:
|
97 |
+
return "No file uploaded.", None
|
98 |
+
|
99 |
+
try:
|
100 |
+
file_path = file_obj.name
|
101 |
+
file_name = os.path.basename(file_path)
|
102 |
+
_, ext = os.path.splitext(file_path)
|
103 |
+
if ext.lower() != '.zip':
|
104 |
+
return "Please upload a ZIP file containing shapefile components.", None
|
105 |
+
|
106 |
+
# Create a temporary directory to extract files
|
107 |
+
with tempfile.TemporaryDirectory() as temp_dir:
|
108 |
+
# Extract ZIP contents
|
109 |
+
with zipfile.ZipFile(file_path, 'r') as zip_ref:
|
110 |
+
zip_ref.extractall(temp_dir)
|
111 |
+
|
112 |
+
# Find .shp file in the extracted contents, excluding __MACOSX directory
|
113 |
+
shp_files = []
|
114 |
+
for root, _, files in os.walk(temp_dir):
|
115 |
+
# Skip __MACOSX directory
|
116 |
+
if '__MACOSX' in root:
|
117 |
+
continue
|
118 |
+
for file in files:
|
119 |
+
if file.endswith('.shp'):
|
120 |
+
shp_files.append(os.path.join(root, file))
|
121 |
+
|
122 |
+
if not shp_files:
|
123 |
+
return "No .shp file found in the ZIP archive.", None
|
124 |
+
|
125 |
+
# Use the first .shp file found
|
126 |
+
shp_path = shp_files[0]
|
127 |
+
|
128 |
+
try:
|
129 |
+
# Read the shapefile
|
130 |
+
regions_gdf = gpd.read_file(shp_path).to_crs("EPSG:4326")
|
131 |
+
|
132 |
+
# Create a permanent directory for the shapefiles if it doesn't exist
|
133 |
+
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
|
134 |
+
os.makedirs(permanent_dir, exist_ok=True)
|
135 |
+
|
136 |
+
# Generate a unique subdirectory name using timestamp
|
137 |
+
timestamp = datetime.now().strftime('%Y%m%d_%H%M%S')
|
138 |
+
target_dir = os.path.join(permanent_dir, f'shapefile_{timestamp}')
|
139 |
+
os.makedirs(target_dir)
|
140 |
+
|
141 |
+
# Copy all related files to the permanent location
|
142 |
+
shp_base = os.path.splitext(shp_path)[0]
|
143 |
+
for ext in ['.shp', '.shx', '.dbf', '.prj', '.cpg', '.sbn', '.sbx']:
|
144 |
+
src_file = f"{shp_base}{ext}"
|
145 |
+
if os.path.exists(src_file):
|
146 |
+
shutil.copy2(src_file, target_dir)
|
147 |
+
|
148 |
+
# Update the current shapefile path to point to the permanent location
|
149 |
+
current_shp_path = os.path.join(target_dir, os.path.basename(shp_path))
|
150 |
+
|
151 |
+
return f"Shapefile uploaded and processed successfully. {len(regions_gdf)} features loaded.", file_name
|
152 |
+
|
153 |
+
except Exception as e:
|
154 |
+
return f"Error processing shapefile: {str(e)}", None
|
155 |
+
|
156 |
+
except Exception as e:
|
157 |
+
return f"Error processing ZIP upload: {str(e)}", None
|
158 |
+
|
159 |
+
|
160 |
+
def print_route_info(df, shp_file_path, sample_checkbox=False, path_checkbox=False):
|
161 |
+
"""Print route information to console based on checkbox settings"""
|
162 |
+
output_lines = []
|
163 |
+
|
164 |
+
for _, row in df.iterrows():
|
165 |
+
if sample_checkbox:
|
166 |
+
date_str = pd.to_datetime(row['created']).strftime('%Y-%m-%d %H:%M:%S')
|
167 |
+
output_lines.append(f"\nSample: {row['name']} ({date_str})")
|
168 |
+
output_lines.append(f" - Vehicle: {row['vehicle_type']}")
|
169 |
+
|
170 |
+
if path_checkbox:
|
171 |
+
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
|
172 |
+
output_lines.append(" - Path list:")
|
173 |
+
|
174 |
+
# Create GeoDataFrame for location lookup
|
175 |
+
coords = []
|
176 |
+
for loc in route:
|
177 |
+
if isinstance(loc, dict):
|
178 |
+
if 'latitude' in loc and 'longitude' in loc:
|
179 |
+
lat = float(loc['latitude']) / 360000.0
|
180 |
+
lng = float(loc['longitude']) / 360000.0
|
181 |
+
coords.append((lat, lng))
|
182 |
+
|
183 |
+
if coords:
|
184 |
+
gdf_sample = gpd.GeoDataFrame(
|
185 |
+
geometry=[Point(lon, lat) for lat, lon in coords],
|
186 |
+
crs="EPSG:4326"
|
187 |
+
)
|
188 |
+
|
189 |
+
# Load regions shapefile using provided path
|
190 |
+
regions_gdf = gpd.read_file(shp_file_path).to_crs("EPSG:4326")
|
191 |
+
|
192 |
+
# Join with regions
|
193 |
+
joined = gpd.sjoin(gdf_sample, regions_gdf, how="left", predicate="within")
|
194 |
+
|
195 |
+
# Get available columns for location info
|
196 |
+
location_columns = []
|
197 |
+
for col in ['NAME_1', 'NAME_2', 'NAME_3', 'TYPE_3']:
|
198 |
+
if col in joined.columns:
|
199 |
+
location_columns.append(col)
|
200 |
+
|
201 |
+
if location_columns:
|
202 |
+
# Create location string based on available columns
|
203 |
+
joined['location'] = joined[location_columns].astype(str).apply(
|
204 |
+
lambda x: "_".join(str(val) for val in x), axis=1
|
205 |
+
)
|
206 |
+
else:
|
207 |
+
# Fallback to coordinates if no matching columns found
|
208 |
+
joined['location'] = joined.geometry.apply(
|
209 |
+
lambda x: f"lat: {x.y:.6f}, lon: {x.x:.6f}"
|
210 |
+
)
|
211 |
+
|
212 |
+
for _, point in joined.iterrows():
|
213 |
+
output_lines.append(f" - {point['location']}")
|
214 |
+
|
215 |
+
output_lines.append("-" * 50)
|
216 |
+
|
217 |
+
return "\n".join(output_lines)
|
218 |
+
|
219 |
+
def get_colors(n, s=1.0, v=1.0):
|
220 |
+
colors = []
|
221 |
+
for i in range(n):
|
222 |
+
h = i / n
|
223 |
+
s = s # Maximum saturation
|
224 |
+
v = v # Maximum value/brightness
|
225 |
+
r, g, b = colorsys.hsv_to_rgb(h, s, v)
|
226 |
+
colors.append(f'#{int(r*255):02x}{int(g*255):02x}{int(b*255):02x}')
|
227 |
+
return colors
|
228 |
+
|
229 |
+
def cal_paths_folium(df, shp_file_path, n_samples=None, start_d=None, end_d=None, company=None,
|
230 |
+
sample_checkbox=False, path_checkbox=False):
|
231 |
+
|
232 |
+
log_messages = []
|
233 |
+
working_df = df.copy()
|
234 |
+
log_messages.append(f"Initial dataframe size: {len(working_df)} rows")
|
235 |
+
|
236 |
+
# Convert created column to datetime and remove timezone information
|
237 |
+
working_df['created'] = pd.to_datetime(working_df['created']).dt.tz_localize(None)
|
238 |
+
|
239 |
+
# Date filtering with better error handling and debugging
|
240 |
+
if start_d:
|
241 |
+
try:
|
242 |
+
start_d = pd.to_datetime(start_d).normalize()
|
243 |
+
log_messages.append(f"Filtering from date: {start_d}")
|
244 |
+
working_df = working_df[working_df['created'] >= start_d]
|
245 |
+
log_messages.append(f"After start date filter: {len(working_df)} rows")
|
246 |
+
except Exception as e:
|
247 |
+
log_messages.append(f"Error in start date filtering: {str(e)}")
|
248 |
+
|
249 |
+
if end_d:
|
250 |
+
try:
|
251 |
+
end_d = pd.to_datetime(end_d).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
|
252 |
+
log_messages.append(f"Filtering until date: {end_d}")
|
253 |
+
working_df = working_df[working_df['created'] <= end_d]
|
254 |
+
log_messages.append(f"After end date filter: {len(working_df)} rows")
|
255 |
+
except Exception as e:
|
256 |
+
log_messages.append(f"Error in end date filtering: {str(e)}")
|
257 |
+
|
258 |
+
# Company filtering with better error handling and debugging
|
259 |
+
if company and company.strip():
|
260 |
+
try:
|
261 |
+
log_messages.append(f"Filtering for company: {company}")
|
262 |
+
working_df = working_df[working_df['name'].str.contains(company, na=False)]
|
263 |
+
log_messages.append(f"After company filter: {len(working_df)} rows")
|
264 |
+
except Exception as e:
|
265 |
+
log_messages.append(f"Error in company filtering: {str(e)}")
|
266 |
+
|
267 |
+
# Sample n
|
268 |
+
if n_samples and len(working_df) > 0:
|
269 |
+
working_df = working_df.sample(n=min(n_samples, len(working_df)), random_state=42)
|
270 |
+
log_messages.append(f"After sampling: {len(working_df)} rows")
|
271 |
+
|
272 |
+
# Print column names and a few rows for debugging
|
273 |
+
log_messages.append(f"Columns in dataframe: {list(working_df.columns)}")
|
274 |
+
if len(working_df) > 0:
|
275 |
+
log_messages.append("First row sample:")
|
276 |
+
log_messages.append(str(working_df.iloc[0]))
|
277 |
+
|
278 |
+
# Generate colors
|
279 |
+
colors = get_colors(max(1, len(working_df)), s=0.5, v=1.0)
|
280 |
+
|
281 |
+
# Print route information
|
282 |
+
if sample_checkbox or path_checkbox:
|
283 |
+
console_output = print_route_info(working_df, shp_file_path, sample_checkbox, path_checkbox)
|
284 |
+
log_messages.append(console_output)
|
285 |
+
|
286 |
+
|
287 |
+
# Generate route data
|
288 |
+
routes = []
|
289 |
+
for i, (_, row) in enumerate(working_df.iterrows()):
|
290 |
+
# Convert route to dict/list if it's a string
|
291 |
+
route = row['route'] if isinstance(row['route'], (dict, list)) else json.loads(row['route'])
|
292 |
+
|
293 |
+
# Handle different possible formats of coordinates
|
294 |
+
coords = []
|
295 |
+
for loc in route:
|
296 |
+
if isinstance(loc, dict):
|
297 |
+
# Handle 'latitude/longitude' format
|
298 |
+
if 'latitude' in loc and 'longitude' in loc:
|
299 |
+
lat = float(loc['latitude'])
|
300 |
+
lng = float(loc['longitude'])
|
301 |
+
|
302 |
+
# Scale coordinates if needed
|
303 |
+
if abs(lat) > 90 or abs(lng) > 180:
|
304 |
+
lat /= 360000.0
|
305 |
+
lng /= 360000.0
|
306 |
+
|
307 |
+
coords.append([lat, lng])
|
308 |
+
|
309 |
+
# Handle 'lat/lng' format
|
310 |
+
elif 'lat' in loc and 'lng' in loc:
|
311 |
+
lat = float(loc['lat'])
|
312 |
+
lng = float(loc['lng'])
|
313 |
+
|
314 |
+
# Scale coordinates if needed
|
315 |
+
if abs(lat) > 90 or abs(lng) > 180:
|
316 |
+
lat /= 360000.0
|
317 |
+
lng /= 360000.0
|
318 |
+
|
319 |
+
coords.append([lat, lng])
|
320 |
+
|
321 |
+
if coords:
|
322 |
+
routes.append({
|
323 |
+
'coordinates': coords,
|
324 |
+
'color': colors[i % len(colors)],
|
325 |
+
'company': str(row.get('name', 'Unknown')),
|
326 |
+
'created': row['created'].strftime('%Y-%m-%d %H:%M:%S')
|
327 |
+
})
|
328 |
+
|
329 |
+
print(f"Generated {len(routes)} valid routes")
|
330 |
+
log_messages.append(f"Generated {len(routes)} valid routes")
|
331 |
+
|
332 |
+
# routes์ ํจ๊ป ๋ก๊ทธ ๋ฉ์์ง๋ ๋ฐํ
|
333 |
+
return routes, "\n".join(log_messages)
|
334 |
+
|
335 |
+
def plot_paths_folium(routes, cluster_df=cluster_df, cluster_num_samples=None, cluster_company_search=None, cluster_date_start=None, cluster_date_end=None, map_location="Seoul", map_type="Satellite map", path_type="point+line", brightness=100):
|
336 |
+
"""Plot routes on a Folium map with customizable settings"""
|
337 |
+
# Map center coordinates based on location selection
|
338 |
+
centers = {
|
339 |
+
"Korea": (36.5, 127.5),
|
340 |
+
"Seoul": (37.5665, 126.9780),
|
341 |
+
"Busan": (35.1796, 129.0756)
|
342 |
+
}
|
343 |
+
zoom_levels = {
|
344 |
+
"Korea": 7,
|
345 |
+
"Seoul": 12,
|
346 |
+
"Busan": 12
|
347 |
+
}
|
348 |
+
|
349 |
+
center = centers.get(map_location, centers["Korea"])
|
350 |
+
zoom_start = zoom_levels.get(map_location, 7)
|
351 |
+
|
352 |
+
|
353 |
+
|
354 |
+
|
355 |
+
|
356 |
+
# Create map with appropriate type
|
357 |
+
if map_type == "Satellite map":
|
358 |
+
m = folium.Map(location=center, zoom_start=zoom_start,
|
359 |
+
tiles='https://server.arcgisonline.com/ArcGIS/rest/services/World_Imagery/MapServer/tile/{z}/{y}/{x}',
|
360 |
+
attr='Esri')
|
361 |
+
else:
|
362 |
+
m = folium.Map(location=center, zoom_start=zoom_start)
|
363 |
+
|
364 |
+
path_fg = folium.FeatureGroup(name="Path").add_to(m)
|
365 |
+
|
366 |
+
# Add routes to the map
|
367 |
+
for route in routes:
|
368 |
+
if path_type in ["point", "point+line"] and len(route['coordinates']) > 0:
|
369 |
+
for i, coord in enumerate(route['coordinates']):
|
370 |
+
x_icon_html = f'''
|
371 |
+
<div style="
|
372 |
+
color: {route['color']};
|
373 |
+
font-weight: bold;
|
374 |
+
font-size: 10px;
|
375 |
+
transform: translate(2px, -3px);">
|
376 |
+
ร
|
377 |
+
</div>
|
378 |
+
'''
|
379 |
+
folium.DivIcon(
|
380 |
+
html=x_icon_html
|
381 |
+
).add_to(folium.Marker(
|
382 |
+
location=coord,
|
383 |
+
popup=f"{route.get('company', 'Unknown')} - Point {i+1}"
|
384 |
+
).add_to(path_fg))
|
385 |
+
|
386 |
+
if path_type in ["line", "point+line"]:
|
387 |
+
folium.PolyLine(
|
388 |
+
route['coordinates'],
|
389 |
+
color=route['color'],
|
390 |
+
weight=0.5,
|
391 |
+
dash_array='1, 1', # ์ ์ ์คํ์ผ (์ ๊ธธ์ด, ๊ฐ๊ฒฉ)
|
392 |
+
popup=route.get('company', 'Unknown')
|
393 |
+
).add_to(path_fg)
|
394 |
+
|
395 |
+
cluster_df['t_pickup'] = pd.to_datetime(cluster_df['t_pickup'])
|
396 |
+
if cluster_date_start:
|
397 |
+
# Convert string to datetime without timezone
|
398 |
+
cluster_date_start = pd.to_datetime(cluster_date_start).normalize()
|
399 |
+
cluster_df = cluster_df[cluster_df['t_pickup'] >= cluster_date_start]
|
400 |
+
|
401 |
+
if cluster_date_end:
|
402 |
+
# Convert string to datetime without timezone
|
403 |
+
cluster_date_end = pd.to_datetime(cluster_date_end).normalize() + pd.Timedelta(days=1) - pd.Timedelta(seconds=1)
|
404 |
+
cluster_df = cluster_df[cluster_df['t_pickup'] <= cluster_date_end]
|
405 |
+
|
406 |
+
|
407 |
+
if cluster_company_search:
|
408 |
+
cluster_df = cluster_df.query("company.str.contains(@cluster_company_search)")
|
409 |
+
|
410 |
+
|
411 |
+
if cluster_num_samples:
|
412 |
+
cluster_df = cluster_df.sample(n=min(cluster_num_samples, len(cluster_df)), random_state=42)
|
413 |
+
|
414 |
+
|
415 |
+
|
416 |
+
cluster_geo_fg = folium.FeatureGroup(name="Cluster Geo").add_to(m)
|
417 |
+
cluster_pmi_fg = folium.FeatureGroup(name="Cluster PMI", show=False).add_to(m)
|
418 |
+
|
419 |
+
|
420 |
+
cluster_geo_values = cluster_df['cluster_geo'].unique()
|
421 |
+
cluster_pmi_values = cluster_df['cluster_pmi'].unique()
|
422 |
+
|
423 |
+
# Create a mapping from cluster numbers to color indices
|
424 |
+
cluster_geo_mapping = {val: idx for idx, val in enumerate(sorted(cluster_geo_values))}
|
425 |
+
cluster_pmi_mapping = {val: idx for idx, val in enumerate(sorted(cluster_pmi_values))}
|
426 |
+
|
427 |
+
cluster_geo_colors = get_colors(len(cluster_geo_values))
|
428 |
+
cluster_pmi_colors = get_colors(len(cluster_pmi_values))
|
429 |
+
|
430 |
+
for _, row in cluster_df.iterrows():
|
431 |
+
# Geo cluster markers remain as circles
|
432 |
+
folium.CircleMarker(
|
433 |
+
location=(row['latitude'], row['longitude']),
|
434 |
+
popup=f"{row['company']} - Cluster {row['cluster_geo']}",
|
435 |
+
radius=3,
|
436 |
+
color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
|
437 |
+
fill=True,
|
438 |
+
fill_color=cluster_geo_colors[cluster_geo_mapping[row['cluster_geo']]],
|
439 |
+
).add_to(cluster_geo_fg)
|
440 |
+
|
441 |
+
# PMI cluster markers as stars
|
442 |
+
star_html = f'''
|
443 |
+
<div style="
|
444 |
+
color: {cluster_pmi_colors[cluster_pmi_mapping[row['cluster_pmi']]]};
|
445 |
+
font-size: 16px;
|
446 |
+
transform: translate(-1px, -7px);
|
447 |
+
text-shadow: 1px 1px 2px black;">
|
448 |
+
โ
|
449 |
+
</div>
|
450 |
+
'''
|
451 |
+
folium.DivIcon(
|
452 |
+
html=star_html
|
453 |
+
).add_to(folium.Marker(
|
454 |
+
location=(row['latitude'], row['longitude']),
|
455 |
+
popup=f"{row['company']} - Cluster {row['cluster_pmi']}",
|
456 |
+
).add_to(cluster_pmi_fg))
|
457 |
+
|
458 |
+
# Group points by cluster for both geo and pmi
|
459 |
+
geo_clusters = {}
|
460 |
+
pmi_clusters = {}
|
461 |
+
|
462 |
+
for _, row in cluster_df.iterrows():
|
463 |
+
# For geo clusters
|
464 |
+
geo_cluster = row['cluster_geo']
|
465 |
+
if geo_cluster not in geo_clusters:
|
466 |
+
geo_clusters[geo_cluster] = []
|
467 |
+
geo_clusters[geo_cluster].append((row['latitude'], row['longitude']))
|
468 |
+
|
469 |
+
# For pmi clusters
|
470 |
+
pmi_cluster = row['cluster_pmi']
|
471 |
+
if pmi_cluster not in pmi_clusters:
|
472 |
+
pmi_clusters[pmi_cluster] = []
|
473 |
+
pmi_clusters[pmi_cluster].append((row['latitude'], row['longitude']))
|
474 |
+
|
475 |
+
# Function to create a closed path by connecting nearest points
|
476 |
+
def create_closed_path(points):
|
477 |
+
if len(points) <= 1:
|
478 |
+
return points
|
479 |
+
|
480 |
+
# Start with the first point
|
481 |
+
path = [points[0]]
|
482 |
+
remaining_points = points[1:]
|
483 |
+
|
484 |
+
# Keep finding the closest point until none are left
|
485 |
+
while remaining_points:
|
486 |
+
current = path[-1]
|
487 |
+
|
488 |
+
# Find closest point to the current point
|
489 |
+
closest_idx = 0
|
490 |
+
closest_dist = float('inf')
|
491 |
+
|
492 |
+
for i, point in enumerate(remaining_points):
|
493 |
+
dist = ((current[0] - point[0])**2 + (current[1] - point[1])**2)**0.5
|
494 |
+
if dist < closest_dist:
|
495 |
+
closest_dist = dist
|
496 |
+
closest_idx = i
|
497 |
+
|
498 |
+
# Add the closest point to the path
|
499 |
+
path.append(remaining_points[closest_idx])
|
500 |
+
remaining_points.pop(closest_idx)
|
501 |
+
|
502 |
+
# Connect back to the first point to close the path
|
503 |
+
path.append(path[0])
|
504 |
+
return path
|
505 |
+
|
506 |
+
# Create polylines for geo clusters
|
507 |
+
for cluster_num, points in geo_clusters.items():
|
508 |
+
if len(points) >= 2: # Need at least 2 points to make a line
|
509 |
+
path = create_closed_path(points)
|
510 |
+
folium.PolyLine(
|
511 |
+
path,
|
512 |
+
color=cluster_geo_colors[cluster_geo_mapping[cluster_num]],
|
513 |
+
weight=2,
|
514 |
+
).add_to(cluster_geo_fg)
|
515 |
+
|
516 |
+
# Create polylines for pmi clusters
|
517 |
+
for cluster_num, points in pmi_clusters.items():
|
518 |
+
if len(points) >= 2: # Need at least 2 points to make a line
|
519 |
+
path = create_closed_path(points)
|
520 |
+
folium.PolyLine(
|
521 |
+
path,
|
522 |
+
color=cluster_pmi_colors[cluster_pmi_mapping[cluster_num]],
|
523 |
+
weight=2,
|
524 |
+
).add_to(cluster_pmi_fg)
|
525 |
+
|
526 |
+
|
527 |
+
|
528 |
+
|
529 |
+
|
530 |
+
|
531 |
+
|
532 |
+
# Create custom legend HTML with three scrollable sections
|
533 |
+
legend_html = '''
|
534 |
+
<div style="position: fixed;
|
535 |
+
top: 120px;
|
536 |
+
right: 10px;
|
537 |
+
width: 200px;
|
538 |
+
background-color: transparent;
|
539 |
+
z-index: 1000;">
|
540 |
+
|
541 |
+
<!-- Path Legend -->
|
542 |
+
<div style="margin-bottom: 5px;
|
543 |
+
background-color: white;
|
544 |
+
border: 2px solid grey;
|
545 |
+
font-size: 10px;">
|
546 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Path Routes</div>
|
547 |
+
<div style="height: 200px;
|
548 |
+
overflow-y: auto;
|
549 |
+
padding: 10px;">
|
550 |
+
'''
|
551 |
+
|
552 |
+
# Add path routes to the legend with larger X symbol
|
553 |
+
for route in routes:
|
554 |
+
legend_html += f'''
|
555 |
+
<div style="display: flex;
|
556 |
+
align-items: center;
|
557 |
+
margin: 5px 0;">
|
558 |
+
<div style="width: 20px;
|
559 |
+
height: 20px;
|
560 |
+
margin-right: 5px;
|
561 |
+
flex-shrink: 0;
|
562 |
+
display: flex;
|
563 |
+
align-items: center;
|
564 |
+
justify-content: center;
|
565 |
+
color: {route['color']};
|
566 |
+
font-weight: bold;
|
567 |
+
font-size: 20px;">
|
568 |
+
ร
|
569 |
+
</div>
|
570 |
+
<span style="word-break: break-all;">
|
571 |
+
{route.get('company', 'Unknown')}_{route.get('created', '')}
|
572 |
+
</span>
|
573 |
+
</div>
|
574 |
+
'''
|
575 |
+
|
576 |
+
# Get unique cluster values from already filtered cluster_df
|
577 |
+
visible_cluster_geo = sorted(cluster_df['cluster_geo'].unique())
|
578 |
+
visible_cluster_pmi = sorted(cluster_df['cluster_pmi'].unique())
|
579 |
+
|
580 |
+
# Add Cluster Geo section with larger circle symbol
|
581 |
+
legend_html += '''
|
582 |
+
</div>
|
583 |
+
</div>
|
584 |
+
|
585 |
+
<!-- Cluster Geo Legend -->
|
586 |
+
<div style="margin-bottom: 5px;
|
587 |
+
background-color: white;
|
588 |
+
border: 2px solid grey;
|
589 |
+
font-size: 10px;">
|
590 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster Geo</div>
|
591 |
+
<div style="height: 200px;
|
592 |
+
overflow-y: auto;
|
593 |
+
padding: 10px;">
|
594 |
+
'''
|
595 |
+
|
596 |
+
# Add only visible cluster geo information with larger circles
|
597 |
+
for cluster_value in visible_cluster_geo:
|
598 |
+
color = cluster_geo_colors[cluster_geo_mapping[cluster_value]]
|
599 |
+
legend_html += f'''
|
600 |
+
<div style="display: flex;
|
601 |
+
align-items: center;
|
602 |
+
margin: 5px 0;">
|
603 |
+
<div style="width: 20px;
|
604 |
+
height: 20px;
|
605 |
+
margin-right: 5px;
|
606 |
+
flex-shrink: 0;
|
607 |
+
display: flex;
|
608 |
+
align-items: center;
|
609 |
+
justify-content: center;">
|
610 |
+
<div style="width: 10px;
|
611 |
+
height: 10px;
|
612 |
+
background-color: {color};
|
613 |
+
border-radius: 50%;"></div>
|
614 |
+
</div>
|
615 |
+
<span style="word-break: break-all;">
|
616 |
+
Cluster {cluster_value}
|
617 |
+
</span>
|
618 |
+
</div>
|
619 |
+
'''
|
620 |
+
|
621 |
+
# Add Cluster PMI section with larger star symbol
|
622 |
+
legend_html += '''
|
623 |
+
</div>
|
624 |
+
</div>
|
625 |
+
|
626 |
+
<!-- Cluster PMI Legend -->
|
627 |
+
<div style="background-color: white;
|
628 |
+
border: 2px solid grey;
|
629 |
+
font-size: 10px;">
|
630 |
+
<div style="padding: 5px; background-color: #f0f0f0; font-weight: bold;">Cluster PMI</div>
|
631 |
+
<div style="height: 200px;
|
632 |
+
overflow-y: auto;
|
633 |
+
padding: 10px;">
|
634 |
+
'''
|
635 |
+
|
636 |
+
# Add only visible cluster PMI information with larger stars
|
637 |
+
for cluster_value in visible_cluster_pmi:
|
638 |
+
color = cluster_pmi_colors[cluster_pmi_mapping[cluster_value]]
|
639 |
+
legend_html += f'''
|
640 |
+
<div style="display: flex;
|
641 |
+
align-items: center;
|
642 |
+
margin: 5px 0;">
|
643 |
+
<div style="width: 20px;
|
644 |
+
height: 20px;
|
645 |
+
margin-right: 5px;
|
646 |
+
flex-shrink: 0;
|
647 |
+
display: flex;
|
648 |
+
align-items: center;
|
649 |
+
justify-content: center;
|
650 |
+
color: {color};
|
651 |
+
font-size: 18px;
|
652 |
+
text-shadow: 1px 1px 2px black;">
|
653 |
+
โ
|
654 |
+
</div>
|
655 |
+
<span style="word-break: break-all;">
|
656 |
+
Cluster {cluster_value}
|
657 |
+
</span>
|
658 |
+
</div>
|
659 |
+
'''
|
660 |
+
|
661 |
+
legend_html += '''
|
662 |
+
</div>
|
663 |
+
</div>
|
664 |
+
</div>
|
665 |
+
'''
|
666 |
+
|
667 |
+
folium.LayerControl(collapsed=False).add_to(m)
|
668 |
+
|
669 |
+
folium.plugins.Fullscreen(
|
670 |
+
position="bottomright",
|
671 |
+
title="Expand me",
|
672 |
+
title_cancel="Exit me",
|
673 |
+
force_separate_button=True,
|
674 |
+
).add_to(m)
|
675 |
+
|
676 |
+
# Add the legend to the map
|
677 |
+
m.get_root().html.add_child(folium.Element(legend_html))
|
678 |
+
|
679 |
+
# Add custom CSS for brightness control - only affecting the satellite tiles
|
680 |
+
custom_css = f"""
|
681 |
+
<style>
|
682 |
+
.leaflet-tile-pane img {{
|
683 |
+
filter: brightness({brightness}%);
|
684 |
+
}}
|
685 |
+
</style>
|
686 |
+
"""
|
687 |
+
m.get_root().header.add_child(folium.Element(custom_css))
|
688 |
+
|
689 |
+
return m._repr_html_()
|
690 |
+
|
691 |
+
|
692 |
+
def update_map(map_location, map_type, path_type, n_samples, company, date_start, date_end,
|
693 |
+
cluster_num_samples, cluster_company_search, cluster_date_start, cluster_date_end,
|
694 |
+
pick_all_date, sample_checkbox, path_checkbox, brightness_slider):
|
695 |
+
"""Update the map based on user selections"""
|
696 |
+
global df, cluster_df, regions_gdf, current_shp_path
|
697 |
+
|
698 |
+
log_messages = []
|
699 |
+
log_messages.append(f"Updating map with settings: Location={map_location}, Type={map_type}, Path={path_type}")
|
700 |
+
|
701 |
+
# Check if data is loaded
|
702 |
+
if df is None:
|
703 |
+
log_messages.append("Loading default data because df is None")
|
704 |
+
df_loaded, msg, _ = load_default_data()
|
705 |
+
if df_loaded is None:
|
706 |
+
return "No data available. Please upload a CSV file.", None
|
707 |
+
else:
|
708 |
+
log_messages.append(f"Using existing df with {len(df)} rows")
|
709 |
+
|
710 |
+
try:
|
711 |
+
# Process date filters with better error handling
|
712 |
+
start_d = None
|
713 |
+
end_d = None
|
714 |
+
|
715 |
+
if not pick_all_date:
|
716 |
+
if date_start and date_start.strip():
|
717 |
+
start_d = date_start
|
718 |
+
log_messages.append(f"Using start date: {start_d}")
|
719 |
+
if date_end and date_end.strip():
|
720 |
+
end_d = date_end
|
721 |
+
log_messages.append(f"Using end date: {end_d}")
|
722 |
+
else:
|
723 |
+
log_messages.append("Using all dates")
|
724 |
+
|
725 |
+
# Check if shapefile exists at current_shp_path
|
726 |
+
if not os.path.exists(current_shp_path):
|
727 |
+
log_messages.append(f"Warning: Shapefile not found at {current_shp_path}")
|
728 |
+
# Try to find the most recently uploaded shapefile
|
729 |
+
permanent_dir = os.path.join('data', 'uploaded_shapefiles')
|
730 |
+
if os.path.exists(permanent_dir):
|
731 |
+
subdirs = [os.path.join(permanent_dir, d) for d in os.listdir(permanent_dir)
|
732 |
+
if os.path.isdir(os.path.join(permanent_dir, d))]
|
733 |
+
if subdirs:
|
734 |
+
# Get the most recent directory
|
735 |
+
latest_dir = max(subdirs, key=os.path.getctime)
|
736 |
+
# Find .shp file in that directory
|
737 |
+
shp_files = [f for f in os.listdir(latest_dir) if f.endswith('.shp')]
|
738 |
+
if shp_files:
|
739 |
+
current_shp_path = os.path.join(latest_dir, shp_files[0])
|
740 |
+
log_messages.append(f"Using most recent shapefile: {current_shp_path}")
|
741 |
+
|
742 |
+
# Calculate routes with full error reporting
|
743 |
+
try:
|
744 |
+
routes, cal_logs = cal_paths_folium(df, current_shp_path, n_samples=n_samples,
|
745 |
+
start_d=start_d, end_d=end_d,
|
746 |
+
company=company, sample_checkbox=sample_checkbox,
|
747 |
+
path_checkbox=path_checkbox)
|
748 |
+
log_messages.append(cal_logs)
|
749 |
+
except Exception as e:
|
750 |
+
log_messages.append(f"Error in route calculation: {str(e)}")
|
751 |
+
import traceback
|
752 |
+
log_messages.append(traceback.format_exc())
|
753 |
+
return "\n".join(log_messages), None
|
754 |
+
|
755 |
+
# Check if we have routes to display
|
756 |
+
if not routes:
|
757 |
+
log_messages.append("No routes to display after applying filters.")
|
758 |
+
empty_map = folium.Map(location=(36.5, 127.5), zoom_start=7)
|
759 |
+
return "\n".join(log_messages), empty_map._repr_html_()
|
760 |
+
|
761 |
+
# Create map
|
762 |
+
html_output = plot_paths_folium(routes, cluster_df, cluster_num_samples, cluster_company_search,
|
763 |
+
cluster_date_start, cluster_date_end, map_location, map_type, path_type, brightness_slider)
|
764 |
+
|
765 |
+
return "\n".join(log_messages), html_output
|
766 |
+
|
767 |
+
except Exception as e:
|
768 |
+
error_msg = f"Error updating map: {str(e)}"
|
769 |
+
log_messages.append(error_msg)
|
770 |
+
import traceback
|
771 |
+
log_messages.append(traceback.format_exc())
|
772 |
+
return "\n".join(log_messages), None
|
773 |
+
|
774 |
+
# Initialize data
|
775 |
+
|
776 |
+
|
777 |
+
def load_default_data():
|
778 |
+
"""Load the default dataset"""
|
779 |
+
global df, cluster_df, regions_gdf
|
780 |
+
default_file = 'data/20250122_Order_List_202411_12_CJW.csv'
|
781 |
+
default_cluster_file = 'data/path_clustering_2024.csv'
|
782 |
+
default_gadm_shp_file = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
783 |
+
|
784 |
+
messages = []
|
785 |
+
path_filename = ""
|
786 |
+
cluster_filename = ""
|
787 |
+
shp_filename = ""
|
788 |
+
|
789 |
+
# Try different encodings for the main file
|
790 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
791 |
+
try:
|
792 |
+
df = pd.read_csv(default_file, engine='python', encoding=encoding)
|
793 |
+
path_filename = os.path.basename(default_file)
|
794 |
+
messages.append(f"Path file loaded successfully: {path_filename}")
|
795 |
+
break
|
796 |
+
except UnicodeDecodeError:
|
797 |
+
continue
|
798 |
+
except Exception as e:
|
799 |
+
messages.append(f"Error loading path file: {str(e)}")
|
800 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
801 |
+
|
802 |
+
# Try different encodings for the cluster file
|
803 |
+
for encoding in ['utf-8', 'cp949', 'euc-kr']:
|
804 |
+
try:
|
805 |
+
cluster_df = pd.read_csv(default_cluster_file, engine='python', encoding=encoding)
|
806 |
+
cluster_filename = os.path.basename(default_cluster_file)
|
807 |
+
messages.append(f"Cluster file loaded successfully: {cluster_filename}")
|
808 |
+
break
|
809 |
+
except UnicodeDecodeError:
|
810 |
+
continue
|
811 |
+
except Exception as e:
|
812 |
+
messages.append(f"Error loading cluster file: {str(e)}")
|
813 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
814 |
+
|
815 |
+
# Load shapefile
|
816 |
+
try:
|
817 |
+
regions_gdf = gpd.read_file(default_gadm_shp_file).to_crs("EPSG:4326")
|
818 |
+
shp_filename = os.path.basename(default_gadm_shp_file)
|
819 |
+
messages.append(f"Shapefile loaded successfully: {shp_filename}")
|
820 |
+
except Exception as e:
|
821 |
+
messages.append(f"Error loading shapefile: {str(e)}")
|
822 |
+
return None, None, None, "\n".join(messages), "", "", ""
|
823 |
+
|
824 |
+
return df, cluster_df, regions_gdf, "\n".join(messages), path_filename, cluster_filename, shp_filename
|
825 |
+
|
826 |
+
init_n_samples = 20
|
827 |
+
init_path_company_search = "๋ฐฑ๋
ํํธ"
|
828 |
+
init_path_date_start = "2024-12-01"
|
829 |
+
init_path_date_end = "2024-12-31"
|
830 |
+
init_cluster_num_samples = 200
|
831 |
+
init_cluster_date_start = "2025-02-24"
|
832 |
+
init_cluster_date_end = "2025-02-24"
|
833 |
+
init_brightness = 50
|
834 |
+
|
835 |
+
|
836 |
+
init_df, init_cluster_df, init_regions_gdf, init_msg, init_path_file, init_cluster_file, init_shp_file = load_default_data()
|
837 |
+
|
838 |
+
|
839 |
+
# Initial map
|
840 |
+
init_shp_file_path = 'data/gadm41_KOR_shp/gadm41_KOR_3.shp'
|
841 |
+
init_routes, _ = cal_paths_folium(df, init_shp_file_path, n_samples=init_n_samples,
|
842 |
+
start_d=init_path_date_start, end_d=init_path_date_end,
|
843 |
+
company=init_path_company_search) if df is not None else ([], "")
|
844 |
+
init_html = plot_paths_folium(routes=init_routes, cluster_df=init_cluster_df, cluster_num_samples=init_cluster_num_samples, cluster_date_start=init_cluster_date_start, cluster_date_end=init_cluster_date_end, brightness=init_brightness) if init_routes else None
|
845 |
+
|
846 |
+
# Create Gradio interface
|
847 |
+
with gr.Blocks() as demo:
|
848 |
+
# Layout
|
849 |
+
with gr.Column():
|
850 |
+
# Map controls
|
851 |
+
with gr.Row():
|
852 |
+
map_location = gr.Radio(
|
853 |
+
["Korea", "Seoul", "Busan"],
|
854 |
+
label="Map Location Shortcuts",
|
855 |
+
value="Seoul"
|
856 |
+
)
|
857 |
+
map_type = gr.Radio(
|
858 |
+
["Normal map", "Satellite map"],
|
859 |
+
label="Map Type",
|
860 |
+
value="Satellite map"
|
861 |
+
)
|
862 |
+
path_type = gr.Radio(
|
863 |
+
["point", "line", "point+line"],
|
864 |
+
label="Path Type",
|
865 |
+
value="point+line"
|
866 |
+
)
|
867 |
+
brightness_slider = gr.Slider(
|
868 |
+
minimum=1,
|
869 |
+
maximum=300,
|
870 |
+
value=50,
|
871 |
+
step=1,
|
872 |
+
label="Map Brightness (%)"
|
873 |
+
)
|
874 |
+
|
875 |
+
# Map display
|
876 |
+
map_html = gr.HTML(init_html, elem_classes=["map-container"])
|
877 |
+
|
878 |
+
generate_btn = gr.Button("Generate Map")
|
879 |
+
|
880 |
+
# Filter controls
|
881 |
+
with gr.Column():
|
882 |
+
with gr.Row():
|
883 |
+
path_file_upload = gr.File(label="Upload Path File", height=89, file_count="single", scale=1)
|
884 |
+
path_current_file = gr.Textbox(label="Current Path File", value=init_path_file, scale=4)
|
885 |
+
with gr.Row():
|
886 |
+
cluster_file_upload = gr.File(label="Upload Cluster File", height=89, file_count="single", scale=1)
|
887 |
+
cluster_current_file = gr.Textbox(label="Current Cluster File", value=init_cluster_file, scale=4)
|
888 |
+
with gr.Row():
|
889 |
+
gadm_shp_upload = gr.File(label="Upload gadm .zip File", height=89, file_count="single", scale=1)
|
890 |
+
gadm_shp_current_file = gr.Textbox(label="Current gadm .zip File", value=init_shp_file, scale=4)
|
891 |
+
with gr.Row():
|
892 |
+
with gr.Row():
|
893 |
+
path_num_samples = gr.Number(label="Path Sample Count", precision=0, value=20, scale=1, minimum=1, maximum=200)
|
894 |
+
path_company_search = gr.Textbox(label="Path Company Search", value="๋ฐฑ๋
ํํธ", scale=4)
|
895 |
+
with gr.Row():
|
896 |
+
cluster_num_samples = gr.Number(label="Cluster Sample Count", precision=0, value=200, scale=1, minimum=1, maximum=200)
|
897 |
+
cluster_company_search = gr.Textbox(label="Cluster Company Search", scale=4)
|
898 |
+
# Date range
|
899 |
+
with gr.Row():
|
900 |
+
with gr.Row():
|
901 |
+
path_date_start = gr.Textbox(label="Path Start Date", placeholder="YYYY-MM-DD", value="2024-12-01")
|
902 |
+
path_date_end = gr.Textbox(label="Path End Date", placeholder="YYYY-MM-DD", value="2024-12-31")
|
903 |
+
with gr.Row():
|
904 |
+
cluster_date_start = gr.Textbox(label="Cluster Start Date", placeholder="YYYY-MM-DD", value="2025-02-24")
|
905 |
+
cluster_date_end = gr.Textbox(label="Cluster End Date", placeholder="YYYY-MM-DD", value="2025-02-24")
|
906 |
+
|
907 |
+
# Checkboxes
|
908 |
+
with gr.Row():
|
909 |
+
pick_all_date = gr.Checkbox(label="Select All Dates")
|
910 |
+
sample_checkbox = gr.Checkbox(label="Print Sample", value=True)
|
911 |
+
path_checkbox = gr.Checkbox(label="Print Path")
|
912 |
+
|
913 |
+
# Console
|
914 |
+
console = gr.Textbox(
|
915 |
+
label="Console",
|
916 |
+
lines=10,
|
917 |
+
max_lines=100,
|
918 |
+
interactive=False,
|
919 |
+
value=init_msg,
|
920 |
+
elem_classes=["console"]
|
921 |
+
)
|
922 |
+
|
923 |
+
# Style
|
924 |
+
gr.Markdown("""
|
925 |
+
<style>
|
926 |
+
.map-container {
|
927 |
+
margin: 10px;
|
928 |
+
width: calc(100% - 20px);
|
929 |
+
height: 600px;
|
930 |
+
}
|
931 |
+
.console {
|
932 |
+
background-color: black;
|
933 |
+
color: white;
|
934 |
+
font-family: monospace;
|
935 |
+
overflow-y: scroll;
|
936 |
+
}
|
937 |
+
</style>
|
938 |
+
""")
|
939 |
+
|
940 |
+
# Event handlers
|
941 |
+
path_file_upload.upload(
|
942 |
+
fn=process_upload,
|
943 |
+
inputs=[path_file_upload],
|
944 |
+
outputs=[console, path_current_file]
|
945 |
+
)
|
946 |
+
cluster_file_upload.upload(
|
947 |
+
fn=process_cluster_upload,
|
948 |
+
inputs=[cluster_file_upload],
|
949 |
+
outputs=[console, cluster_current_file]
|
950 |
+
)
|
951 |
+
gadm_shp_upload.upload(
|
952 |
+
fn=process_shp_upload,
|
953 |
+
inputs=[gadm_shp_upload],
|
954 |
+
outputs=[console, gadm_shp_current_file]
|
955 |
+
)
|
956 |
+
|
957 |
+
generate_btn.click(
|
958 |
+
fn=update_map,
|
959 |
+
inputs=[
|
960 |
+
map_location, map_type, path_type, path_num_samples, path_company_search,
|
961 |
+
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
|
962 |
+
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
|
963 |
+
brightness_slider
|
964 |
+
],
|
965 |
+
outputs=[console, map_html]
|
966 |
+
)
|
967 |
+
|
968 |
+
# Auto-update radio buttons
|
969 |
+
for control in [map_location, map_type, path_type, brightness_slider]:
|
970 |
+
control.change(
|
971 |
+
fn=update_map,
|
972 |
+
inputs=[
|
973 |
+
map_location, map_type, path_type, path_num_samples, path_company_search,
|
974 |
+
path_date_start, path_date_end, cluster_num_samples, cluster_company_search,
|
975 |
+
cluster_date_start, cluster_date_end, pick_all_date, sample_checkbox, path_checkbox,
|
976 |
+
brightness_slider
|
977 |
+
],
|
978 |
+
outputs=[console, map_html]
|
979 |
+
)
|
980 |
+
|
981 |
+
# Launch the app
|
982 |
+
demo.launch(share=True)
|
requirements.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
pandas
|
2 |
+
numpy
|
3 |
+
folium
|
4 |
+
gradio
|
5 |
+
geopandas
|
6 |
+
shapely
|
7 |
+
git-lfs
|