File size: 2,222 Bytes
7e3e85d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
##################
# Trainer settings
##################

MODEL	MeetingNet_Transformer
TASK	HMNet
CRITERION MLECriterion

SEED    1033

MAX_NUM_EPOCHS	20
EVAL_PER_UPDATE_NUM	10
UPDATES_PER_EPOCH 20

# The actuall learning rate will be multiplied with the number of GPUs
OPTIMIZER	RAdam
START_LEARNING_RATE	1e-3
LR_SCHEDULER	LnrWrmpInvSqRtDcyScheduler
WARMUP_STEPS	16000
WARMUP_INIT_LR  1e-4
WARMUP_END_LR 1e-3

# The actuall start learning rate equals START_LEARNING_RATE * GRADIENT_ACCUMULATE_STEP
# Model will be updated after every MINI_BATCH * GRADIENT_ACCUMULATE_STEP samples
GRADIENT_ACCUMULATE_STEP	5

GRAD_CLIPPING    2

##################
# Task settings
##################

# This is the relative path to the directory where this conf file locates
# not a good idea to put data with code
# Are we able to provide a list of dir paths in TRAIN_FILE?
USE_REL_DATA_PATH
TRAIN_FILE	../ExampleRawData/meeting_summarization/AMI_proprec/train_ami.json
DEV_FILE	../ExampleRawData/meeting_summarization/AMI_proprec/valid_ami.json
TEST_FILE	../ExampleRawData/meeting_summarization/AMI_proprec/test_ami.json
ROLE_DICT_FILE  ../ExampleRawData/meeting_summarization/role_dict_ext.json

MINI_BATCH	1
MAX_PADDING_RATIO	1
BATCH_READ_AHEAD	10
DOC_SHUFFLE_BUF_SIZE	10
SAMPLE_SHUFFLE_BUFFER_SIZE	10
BATCH_SHUFFLE_BUFFER_SIZE	10

MAX_TRANSCRIPT_WORD 8300
MAX_SENT_LEN 30
MAX_SENT_NUM 300

##################
# Model settings
##################

DROPOUT	0.1
VOCAB_DIM	512
ROLE_SIZE   32
ROLE_DIM	16
POS_DIM 16
ENT_DIM 16

USE_ROLE
USE_POSENT

USE_BOS_TOKEN
USE_EOS_TOKEN

TRANSFORMER_EMBED_DROPOUT	0.1
TRANSFORMER_RESIDUAL_DROPOUT	0.1
TRANSFORMER_ATTENTION_DROPOUT	0.1
TRANSFORMER_LAYER	6
TRANSFORMER_HEAD	8
TRANSFORMER_POS_DISCOUNT	80

PRE_TOKENIZER	TransfoXLTokenizer
PRE_TOKENIZER_PATH  ../ExampleInitModel/transfo-xl-wt103
PYLEARN_MODEL <relative_path_to_pretrained_model_folder>
# e.g. PYLEARN_MODEL conf_hmnet_AMI_conf~/run_1/11600
# PYLEARN_MODEL ../ExampleInitModel/AMI-finetuned

##################
# Tokenizer settings
##################

EXTRA_IDS	1000

##################
# Decoding settings
##################

BEAM_WIDTH      6
EVAL_TOKENIZED
EVAL_LOWERCASE
MAX_GEN_LENGTH  512
MIN_GEN_LENGTH  400
NO_REPEAT_NGRAM_SIZE 3