Spaces:
Runtime error
Runtime error
Delete models/av_mossformer2_tse/av_mossformer_tmp.py
Browse files
models/av_mossformer2_tse/av_mossformer_tmp.py
DELETED
|
@@ -1,252 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
import torch.nn as nn
|
| 4 |
-
import torch.nn.functional as F
|
| 5 |
-
import torchaudio
|
| 6 |
-
|
| 7 |
-
import math
|
| 8 |
-
|
| 9 |
-
from .mossformer.utils.one_path_flash_fsmn import Dual_Path_Model, SBFLASHBlock_DualA
|
| 10 |
-
from models.av_mossformer2_tse.visual_frontend import VisualFrontend
|
| 11 |
-
|
| 12 |
-
EPS = 1e-8
|
| 13 |
-
|
| 14 |
-
class avMossformer(nn.Module):
|
| 15 |
-
def __init__(self, args):
|
| 16 |
-
super(avMossformer, self).__init__()
|
| 17 |
-
|
| 18 |
-
N, L, = args.network_audio.encoder_out_nchannels, args.network_audio.encoder_kernel_size
|
| 19 |
-
|
| 20 |
-
self.encoder = Encoder(L, N)
|
| 21 |
-
self.separator = Separator(args)
|
| 22 |
-
self.decoder = Decoder(args, N, L)
|
| 23 |
-
|
| 24 |
-
for p in self.parameters():
|
| 25 |
-
if p.dim() > 1:
|
| 26 |
-
nn.init.xavier_normal_(p)
|
| 27 |
-
|
| 28 |
-
def forward(self, mixture, visual):
|
| 29 |
-
"""
|
| 30 |
-
Args:
|
| 31 |
-
mixture: [M, T], M is batch size, T is #samples
|
| 32 |
-
Returns:
|
| 33 |
-
est_source: [M, C, T]
|
| 34 |
-
"""
|
| 35 |
-
mixture_w = self.encoder(mixture)
|
| 36 |
-
est_mask = self.separator(mixture_w, visual)
|
| 37 |
-
est_source = self.decoder(mixture_w, est_mask)
|
| 38 |
-
|
| 39 |
-
# T changed after conv1d in encoder, fix it here
|
| 40 |
-
T_origin = mixture.size(-1)
|
| 41 |
-
T_conv = est_source.size(-1)
|
| 42 |
-
est_source = F.pad(est_source, (0, T_origin - T_conv))
|
| 43 |
-
return est_source
|
| 44 |
-
|
| 45 |
-
class Encoder(nn.Module):
|
| 46 |
-
def __init__(self, L, N):
|
| 47 |
-
super(Encoder, self).__init__()
|
| 48 |
-
self.L, self.N = L, N
|
| 49 |
-
self.conv1d_U = nn.Conv1d(1, N, kernel_size=L, stride=L // 2, bias=False)
|
| 50 |
-
|
| 51 |
-
def forward(self, mixture):
|
| 52 |
-
"""
|
| 53 |
-
Args:
|
| 54 |
-
mixture: [M, T], M is batch size, T is #samples
|
| 55 |
-
Returns:
|
| 56 |
-
mixture_w: [M, N, K], where K = (T-L)/(L/2)+1 = 2T/L-1
|
| 57 |
-
"""
|
| 58 |
-
mixture = torch.unsqueeze(mixture, 1) # [M, 1, T]
|
| 59 |
-
mixture_w = F.relu(self.conv1d_U(mixture)) # [M, N, K]
|
| 60 |
-
return mixture_w
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
class Decoder(nn.Module):
|
| 64 |
-
def __init__(self, args, N, L):
|
| 65 |
-
super(Decoder, self).__init__()
|
| 66 |
-
self.N, self.L, self.args = N, L, args
|
| 67 |
-
self.basis_signals = nn.Linear(N, L, bias=False)
|
| 68 |
-
|
| 69 |
-
def forward(self, mixture_w, est_mask):
|
| 70 |
-
"""
|
| 71 |
-
Args:
|
| 72 |
-
mixture_w: [M, N, K]
|
| 73 |
-
est_mask: [M, C, N, K]
|
| 74 |
-
Returns:
|
| 75 |
-
est_source: [M, C, T]
|
| 76 |
-
"""
|
| 77 |
-
est_source = mixture_w * est_mask
|
| 78 |
-
est_source = torch.transpose(est_source, 2, 1) # [M, K, N]
|
| 79 |
-
est_source = self.basis_signals(est_source) # [M, K, L]
|
| 80 |
-
est_source = overlap_and_add(est_source, self.L//2) # M x C x T
|
| 81 |
-
return est_source
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
class Separator(nn.Module):
|
| 87 |
-
def __init__(self, args):
|
| 88 |
-
super(Separator, self).__init__()
|
| 89 |
-
|
| 90 |
-
self.layer_norm = nn.GroupNorm(1, args.network_audio.encoder_out_nchannels, eps=1e-8)
|
| 91 |
-
self.bottleneck_conv1x1 = nn.Conv1d(args.network_audio.encoder_out_nchannels, args.network_audio.encoder_out_nchannels, 1, bias=False)
|
| 92 |
-
|
| 93 |
-
# mossformer 2
|
| 94 |
-
intra_model = SBFLASHBlock_DualA(
|
| 95 |
-
num_layers=args.network_audio.intra_numlayers,
|
| 96 |
-
d_model=args.network_audio.encoder_out_nchannels,
|
| 97 |
-
nhead=args.network_audio.intra_nhead,
|
| 98 |
-
d_ffn=args.network_audio.intra_dffn,
|
| 99 |
-
dropout=args.network_audio.intra_dropout,
|
| 100 |
-
use_positional_encoding=args.network_audio.intra_use_positional,
|
| 101 |
-
norm_before=args.network_audio.intra_norm_before
|
| 102 |
-
)
|
| 103 |
-
|
| 104 |
-
self.masknet = Dual_Path_Model(
|
| 105 |
-
in_channels=args.network_audio.encoder_out_nchannels,
|
| 106 |
-
out_channels=args.network_audio.encoder_out_nchannels,
|
| 107 |
-
intra_model=intra_model,
|
| 108 |
-
num_layers=args.network_audio.masknet_numlayers,
|
| 109 |
-
norm=args.network_audio.masknet_norm,
|
| 110 |
-
K=args.network_audio.masknet_chunksize,
|
| 111 |
-
num_spks=args.network_audio.masknet_numspks,
|
| 112 |
-
skip_around_intra=args.network_audio.masknet_extraskipconnection,
|
| 113 |
-
linear_layer_after_inter_intra=args.network_audio.masknet_useextralinearlayer
|
| 114 |
-
)
|
| 115 |
-
|
| 116 |
-
# reference
|
| 117 |
-
# visual
|
| 118 |
-
stacks = []
|
| 119 |
-
for x in range(5):
|
| 120 |
-
stacks +=[VisualConv1D(V=256, H=512)]
|
| 121 |
-
self.visual_conv = nn.Sequential(*stacks)
|
| 122 |
-
self.v_ds = nn.Conv1d(512, 256, 1, bias=False)
|
| 123 |
-
self.av_conv = nn.Conv1d(args.network_audio.encoder_out_nchannels+args.network_reference.emb_size, args.network_audio.encoder_out_nchannels, 1, bias=True)
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
def forward(self, x, visual):
|
| 127 |
-
"""
|
| 128 |
-
Keep this API same with TasNet
|
| 129 |
-
Args:
|
| 130 |
-
mixture_w: [M, N, K], M is batch size
|
| 131 |
-
returns:
|
| 132 |
-
est_mask: [M, C, N, K]
|
| 133 |
-
"""
|
| 134 |
-
M, N, D = x.size()
|
| 135 |
-
|
| 136 |
-
x = self.layer_norm(x)
|
| 137 |
-
x = self.bottleneck_conv1x1(x)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
visual = visual.transpose(1,2)
|
| 141 |
-
visual = self.v_ds(visual)
|
| 142 |
-
visual = self.visual_conv(visual)
|
| 143 |
-
visual = F.interpolate(visual, (D), mode='linear')
|
| 144 |
-
|
| 145 |
-
x = torch.cat((x, visual),1)
|
| 146 |
-
x = self.av_conv(x)
|
| 147 |
-
|
| 148 |
-
x = self.masknet(x)
|
| 149 |
-
|
| 150 |
-
x = x.squeeze(0)
|
| 151 |
-
|
| 152 |
-
return x
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
def overlap_and_add(signal, frame_step):
|
| 157 |
-
"""Reconstructs a signal from a framed representation.
|
| 158 |
-
|
| 159 |
-
Adds potentially overlapping frames of a signal with shape
|
| 160 |
-
`[..., frames, frame_length]`, offsetting subsequent frames by `frame_step`.
|
| 161 |
-
The resulting tensor has shape `[..., output_size]` where
|
| 162 |
-
|
| 163 |
-
output_size = (frames - 1) * frame_step + frame_length
|
| 164 |
-
|
| 165 |
-
Args:
|
| 166 |
-
signal: A [..., frames, frame_length] Tensor. All dimensions may be unknown, and rank must be at least 2.
|
| 167 |
-
frame_step: An integer denoting overlap offsets. Must be less than or equal to frame_length.
|
| 168 |
-
|
| 169 |
-
Returns:
|
| 170 |
-
A Tensor with shape [..., output_size] containing the overlap-added frames of signal's inner-most two dimensions.
|
| 171 |
-
output_size = (frames - 1) * frame_step + frame_length
|
| 172 |
-
|
| 173 |
-
Based on https://github.com/tensorflow/tensorflow/blob/r1.12/tensorflow/contrib/signal/python/ops/reconstruction_ops.py
|
| 174 |
-
"""
|
| 175 |
-
outer_dimensions = signal.size()[:-2]
|
| 176 |
-
frames, frame_length = signal.size()[-2:]
|
| 177 |
-
|
| 178 |
-
subframe_length = math.gcd(frame_length, frame_step) # gcd=Greatest Common Divisor
|
| 179 |
-
subframe_step = frame_step // subframe_length
|
| 180 |
-
subframes_per_frame = frame_length // subframe_length
|
| 181 |
-
output_size = frame_step * (frames - 1) + frame_length
|
| 182 |
-
output_subframes = output_size // subframe_length
|
| 183 |
-
|
| 184 |
-
subframe_signal = signal.view(*outer_dimensions, -1, subframe_length)
|
| 185 |
-
|
| 186 |
-
frame = torch.arange(0, output_subframes).unfold(0, subframes_per_frame, subframe_step)
|
| 187 |
-
frame = signal.new_tensor(frame).long().cuda() # signal may in GPU or CPU
|
| 188 |
-
frame = frame.contiguous().view(-1)
|
| 189 |
-
|
| 190 |
-
result = signal.new_zeros(*outer_dimensions, output_subframes, subframe_length)
|
| 191 |
-
result.index_add_(-2, frame, subframe_signal)
|
| 192 |
-
result = result.view(*outer_dimensions, -1)
|
| 193 |
-
return result
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
class av_mossformer_tmp(nn.Module):
|
| 197 |
-
def __init__(self, args):
|
| 198 |
-
super(av_mossformer_tmp, self).__init__()
|
| 199 |
-
args.causal=0
|
| 200 |
-
self.sep_network = avMossformer(args)
|
| 201 |
-
self.v_front_end = VisualFrontend(args)
|
| 202 |
-
|
| 203 |
-
def forward(self, mixture, ref):
|
| 204 |
-
ref = self.v_front_end(ref.unsqueeze(1)).transpose(1,2)
|
| 205 |
-
return self.sep_network(mixture, ref)
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
class VisualConv1D(nn.Module):
|
| 210 |
-
def __init__(self, V=256, H=512):
|
| 211 |
-
super(VisualConv1D, self).__init__()
|
| 212 |
-
relu_0 = nn.ReLU()
|
| 213 |
-
norm_0 = GlobalLayerNorm(V)
|
| 214 |
-
conv1x1 = nn.Conv1d(V, H, 1, bias=False)
|
| 215 |
-
relu = nn.ReLU()
|
| 216 |
-
norm_1 = GlobalLayerNorm(H)
|
| 217 |
-
dsconv = nn.Conv1d(H, H, 3, stride=1, padding=1,dilation=1, groups=H, bias=False)
|
| 218 |
-
prelu = nn.PReLU()
|
| 219 |
-
norm_2 = GlobalLayerNorm(H)
|
| 220 |
-
pw_conv = nn.Conv1d(H, V, 1, bias=False)
|
| 221 |
-
self.net = nn.Sequential(relu_0, norm_0, conv1x1, relu, norm_1 ,dsconv, prelu, norm_2, pw_conv)
|
| 222 |
-
|
| 223 |
-
def forward(self, x):
|
| 224 |
-
out = self.net(x)
|
| 225 |
-
return out + x
|
| 226 |
-
|
| 227 |
-
class GlobalLayerNorm(nn.Module):
|
| 228 |
-
"""Global Layer Normalization (gLN)"""
|
| 229 |
-
def __init__(self, channel_size):
|
| 230 |
-
super(GlobalLayerNorm, self).__init__()
|
| 231 |
-
self.gamma = nn.Parameter(torch.Tensor(1, channel_size, 1)) # [1, N, 1]
|
| 232 |
-
self.beta = nn.Parameter(torch.Tensor(1, channel_size,1 )) # [1, N, 1]
|
| 233 |
-
self.reset_parameters()
|
| 234 |
-
|
| 235 |
-
def reset_parameters(self):
|
| 236 |
-
self.gamma.data.fill_(1)
|
| 237 |
-
self.beta.data.zero_()
|
| 238 |
-
|
| 239 |
-
def forward(self, y):
|
| 240 |
-
"""
|
| 241 |
-
Args:
|
| 242 |
-
y: [M, N, K], M is batch size, N is channel size, K is length
|
| 243 |
-
Returns:
|
| 244 |
-
gLN_y: [M, N, K]
|
| 245 |
-
"""
|
| 246 |
-
# TODO: in torch 1.0, torch.mean() support dim list
|
| 247 |
-
mean = y.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True) #[M, 1, 1]
|
| 248 |
-
var = (torch.pow(y-mean, 2)).mean(dim=1, keepdim=True).mean(dim=2, keepdim=True)
|
| 249 |
-
gLN_y = self.gamma * (y - mean) / torch.pow(var + EPS, 0.5) + self.beta
|
| 250 |
-
return gLN_y
|
| 251 |
-
|
| 252 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|