mnist / app.py
alibayram's picture
Refactor sketch recognition app: enhance image handling, improve error messages, and update app description
051f92c
raw
history blame
1.94 kB
import os
import numpy as np
import cv2
import gradio as gr
import tensorflow as tf
from PIL import Image
# app title
title = "Welcome on your first sketch recognition app!"
# app description
head = (
"<center>"
"<img src='./mnist-classes.png' width=400>"
"<p>The robot was trained to classify numbers (0 to 9). "
"To test it, write your number in the space provided!</p>"
"</center>"
)
# GitHub repository link
ref = "Find the whole code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)."
# Image size
img_size = 28
# Classes
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"]
# Load model
model_path = "./sketch_recognition_numbers_model.h5"
try:
model = tf.keras.models.load_model(model_path)
except Exception as e:
raise FileNotFoundError(f"Model file '{model_path}' not found or failed to load. {str(e)}")
def predict(img):
# If no image is provided, return an error message
if img is None:
return {"error": "No image provided."}
# Ensure the image is a PIL Image
if not isinstance(img, Image.Image):
img = Image.fromarray(np.uint8(img))
# Convert to grayscale
img = img.convert("L")
# Convert PIL Image to a NumPy array of type uint8
img = np.array(img, dtype=np.uint8)
# Resize to (28x28)
img = cv2.resize(img, (img_size, img_size))
# Reshape to match model input shape (1, 28, 28, 1)
img = img.reshape(1, img_size, img_size, 1)
# Model predictions
preds = model.predict(img)[0]
# Return probabilities for each class
return {label: float(pred) for label, pred in zip(labels, preds)}
# Use gr.Sketchpad to ensure a PIL image is returned
interface = gr.Interface(
fn=predict,
inputs=gr.Sketchpad(type="pil"),
outputs=gr.Label(num_top_classes=3),
title=title,
description=head,
article=ref
)
interface.launch()