import numpy as np | |
import gradio as gr | |
import tensorflow as tf | |
import cv2 | |
# App title | |
title = "Welcome to your first sketch recognition app!" | |
# App description | |
head = ( | |
"<center>" | |
"<img src='./mnist-classes.png' width=400>" | |
"<p>The model is trained to classify numbers (from 0 to 9). " | |
"To test it, draw your number in the space provided.</p>" | |
"</center>" | |
) | |
# GitHub repository link | |
ref = "Find the complete code [here](https://github.com/ovh/ai-training-examples/tree/main/apps/gradio/sketch-recognition)." | |
# Image size: 28x28 | |
img_size = 28 | |
# Class names (from 0 to 9) | |
labels = ["zero", "one", "two", "three", "four", "five", "six", "seven", "eight", "nine"] | |
# Load model (trained on MNIST dataset) | |
model = tf.keras.models.load_model("./sketch_recognition_numbers_model.h5") | |
# Prediction function for sketch recognition | |
def predict(data): | |
# Extract the 'image' key from the input dictionary | |
img = data['image'] | |
# Convert to NumPy array | |
img = np.array(img) | |
# Convert to grayscale | |
img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY) | |
# Resize image to 28x28 | |
img = cv2.resize(img, (img_size, img_size)) | |
# Normalize pixel values | |
img = img / 255.0 | |
# Reshape image to match model input | |
img = img.reshape(1, img_size, img_size, 1) | |
# Model predictions | |
preds = model.predict(img)[0] | |
# Return the probability for each class | |
return {label: float(pred) for label, pred in zip(labels, preds)} | |
# Top 3 classes | |
label = gr.Label(num_top_classes=3) | |
# Open Gradio interface for sketch recognition | |
interface = gr.Interface( | |
fn=predict, | |
inputs=gr.Sketchpad(), | |
outputs=label, | |
title=title, | |
description=head, | |
article=ref | |
) | |
interface.launch() |