import torch import torch.nn as nn class UstaCausalAttention(nn.Module): def __init__(self, embedding_dim, output_dim, context_length, dropout_rate = 0): super().__init__() self.embedding_dim = embedding_dim self.q_weights = nn.Linear(embedding_dim, output_dim, bias=False) self.k_weights = nn.Linear(embedding_dim, output_dim, bias=False) self.v_weights = nn.Linear(embedding_dim, output_dim, bias=False) self.dropout = nn.Dropout(dropout_rate) self.register_buffer("mask", torch.tril(torch.ones(context_length, context_length))) self.context_length = context_length def forward(self, x): number_of_tokens = x.shape[0] # truncate the context length to the context length of the model x = x[:self.context_length] q = self.q_weights(x) k = self.k_weights(x) v = self.v_weights(x) attention_scores = q @ k.T attention_scores = attention_scores.masked_fill_( self.mask.bool()[:number_of_tokens, :number_of_tokens] == 0, -torch.inf ) attention_scores = torch.softmax(attention_scores / k.shape[-1] ** 0.5, dim=1) attention_scores = self.dropout(attention_scores) return attention_scores @ v