import torch import torch.nn as nn def get_rotary_position_encoding(input: torch.Tensor, base=10000, device="cpu"): batch_size, context_length, dimension = input.shape assert dimension % 2 == 0, "dimension must be even" half_dimension = dimension // 2 freqs_indices = torch.arange(0, half_dimension, device=device, dtype=torch.float32) freqs = 1.0 / (base ** (freqs_indices / dimension)) positions = torch.arange(0, context_length, device=device, dtype=torch.float32).unsqueeze(1) angles = positions * freqs sin_angles = torch.sin(angles) cos_angles = torch.cos(angles) input_even = input[:, :, :dimension // 2] # [0, 2, 4, ..] input_odd = input[:, :, dimension // 2:] # [1, 3, 5, ..] input_even_rotated = input_even * cos_angles - input_odd * sin_angles input_odd_rotated = input_even * sin_angles + input_odd * cos_angles input_rotated = torch.empty_like(input, device=device) input_rotated[:, :, :dimension // 2] = input_even_rotated input_rotated[:, :, dimension // 2:] = input_odd_rotated return input_rotated class UstaEmbedding(nn.Module): def __init__(self, vocab_size, embedding_dim, context_length, device): super().__init__() # position embedding but not being used in the forward pass # it is just for educational purposes # self.pos_embedding = nn.Embedding(context_length, embedding_dim) # self.get_pos = get_rotary_position_encoding self.embedding = nn.Embedding(vocab_size, embedding_dim, device=device) self.get_pos = get_rotary_position_encoding self.device = device def forward(self, x): x = self.embedding(x) x = self.get_pos(x, device=self.device) return x