import torch import torch.nn as nn class UstaMultiHeadAttention(nn.Module): def __init__(self, embedding_dim, output_dim, context_length, num_heads, dropout_rate = 0, device="cpu"): super().__init__() self.context_length = context_length self.multi_head_attention = nn.MultiheadAttention(embedding_dim, num_heads, dropout=dropout_rate, device=device) self.projection = nn.Linear(embedding_dim, output_dim, device=device) self.register_buffer("mask", torch.triu(torch.ones(context_length, context_length), diagonal=1).bool().to(device)) def forward(self, x): number_of_tokens = x.shape[0] x = x[:self.context_length] attention_mask = self.mask[:number_of_tokens, :number_of_tokens] out, _ = self.multi_head_attention(x, x, x, attn_mask=attention_mask) out = self.projection(out) return out