import torch import torch.nn as nn class UstaSelfAttention(nn.Module): def __init__(self, embedding_dim, output_dim): super().__init__() self.embedding_dim = embedding_dim self.q_weights = nn.Linear(embedding_dim, output_dim, bias=False) self.k_weights = nn.Linear(embedding_dim, output_dim, bias=False) self.v_weights = nn.Linear(embedding_dim, output_dim, bias=False) def forward(self, x): q = self.q_weights(x) k = self.k_weights(x) v = self.v_weights(x) attention_scores = q @ k.T attention_weights = torch.softmax(attention_scores / k.shape[-1] ** 0.5, dim=1) return attention_weights @ v