Spaces:
Sleeping
Sleeping
File size: 9,037 Bytes
31ffb61 4829948 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
#from texts import *
from langgraph.graph import StateGraph
from langchain_core.runnables import RunnableLambda
from openai import OpenAI
import os
import openai
from langchain.text_splitter import RecursiveCharacterTextSplitter
import torch
from typing import TypedDict
import requests
import json
from typing import List, Dict, Any
from sklearn.cluster import KMeans
import numpy as np
file_text=''
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1024,
chunk_overlap=256,
length_function=len
)
openai.api_key = os.getenv('OPENAI_API_KEY')
client=OpenAI()
# def get_embedding(text, model="text-embedding-3-small"):
# # response = openai.embeddings.create(
# # input=[text],
# # model=model
# # )
# embeddings = encoder.encode([text], convert_to_tensor=True, show_progress_bar=True)
# embeddings = embeddings.cpu().numpy()
# return embeddings
# text=chuncked_text+Focusing_text+planning_text+Focusing_text2+Evoking_text
# chunks=text_splitter.split_text(text)
# embeddings=[get_embedding(chunk) for chunk in chunks]
# embedds=np.array(embeddings)
# kmeans=KMeans(n_clusters=3,max_iter=1000)
# kmeans.fit(embedds)
# def embed_document(state,file_text):
# chunks=text_splitter.split_text(file_text)
# embeddings=encoder.encode(chunks, convert_to_tensor=True, show_progress_bar=False)
# embeddings=embeddings.cpu().numpy()
# print(len(embeddings))
# return {'single_query':state['single_query'],'embeddings':embeddings,'chunks':chunks}
def get_knowledge(state,embeddings,chunks,method='cosine'):
query_embedding = state['embedded_query']
if method=='cosine':
# Convert to tensor
query_tensor = torch.tensor(query_embedding, dtype=torch.float32).to('cpu') # shape: [embedding_dim]
#embeddings_tensor = torch.tensor(embeddings, dtype=torch.float32).to('cuda') # shape: [num_chunks, embedding_dim]
# Normalize
embeddings_tensor=torch.from_numpy(embeddings).to('cpu')
query_tensor = query_tensor / query_tensor.norm()
embeddings_tensor = embeddings_tensor / embeddings_tensor.norm(dim=1, keepdim=True)
# Compute cosine similarity
similarities = torch.matmul(query_tensor, embeddings_tensor.T)
print(similarities.shape)
top_k = 5
top_k_indices = torch.topk(similarities, k=top_k).indices
print(top_k_indices)
return {'embedded_query':state['embedded_query'],'knowledge':[chunks[i] for i in top_k_indices.squeeze(0)]}
# elif method=='Kmeans':
# query_emb = np.array(get_embedding(state['single_query']))
# # Predict the closest cluster
# cluster_idx = kmeans.predict([query_emb])[0]
# # Find indices of documents in this cluster
# cluster_doc_indices = np.where(kmeans.labels_ == cluster_idx)[0]
# # Compute L2 (Euclidean) distance within the cluster
# cluster_embs = np.array(embeddings)[cluster_doc_indices]
# distances = np.linalg.norm(cluster_embs - query_emb, axis=1)
# top_k=5
# # Get top_k most similar documents (smallest distances)
# top_indices = distances.argsort()[:top_k]
# return {'single_query':state['single_query'],'knowledge':[chunks[cluster_doc_indices[i]] for i in top_indices]}
def summerise_knowledge(state):
prompt="""
[system]
## Instructions:
You are skillfull text analysist. Summerise the extracted information from uploaded file by the user. Make your summary as concice as possible.
### Inputs:
Extracted Knowledge:
{}
### Output:
"""
text=""
chunks=state['knowledge']
for chunk in chunks:
text+=chunk
response=client.chat.completions.create(
model="gpt-5-mini",
messages =[{'role':'user','content':prompt.format(text)}])
# url = "https://11434-dep-01k080agynagw33vkkb9xfxpkb-d.cloudspaces.litng.ai/api/chat"
# s = requests.Session()
# s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"})
# response = s.post(url, json={
# "model": "hf.co/alibidaran/LLAMA3-instructive_reasoning-GGUF:Q8_0",
# "messages":[{'role':'user','content':prompt.format(text)}] ,
# "options": {
# "temperature": 0.7,
# "top_p": 0.95 # Set your desired top_p here
# }
# })
# full_response = ""
# for line in response.iter_lines():
# if line:
# data = json.loads(line.decode("utf-8"))
# message = data.get("message", {})
# content = message.get("content", "")
# full_response += content
# if data.get("done", Falsurl = "https://800-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict"):
# break
print(response.choices[0].message)
return {'embedded_query':state['embedded_query'],'summary':response.choices[0].message.content}
#return {'single_query':state['single_query'],'summary':full_response}
# def making_instructions(state):
# prompt="""
# [system]
# ## Instructions:
# You are skill full certificated psychologist. Create an instruction for the practitioner to help them how to behaive and respond to the client effectively.
# ## Input:
# [summary]
# {}
# ### Output:
# """
# response=client.chat.completions.create(
# model="gpt-4o-mini",
# # api_base="https://litellm.llemma.net/",
# # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA",
# messages =[{'role':'user','content':prompt.format(state['summary'])}],
# temperature=0.7,
# top_p=0.95,
# max_tokens=800)
# return {'query':state['query'],'instruction':response.choices[0].message}
def respond(state):
system_prompt="""
You are a reasonable expert who thinks and answer the users question.
Before respond first think and create a chain of thoughts in your mind.
Then respond to the client. Also follow the retrived information in the ##Summary section.
Your chain of thought and reflection must be in <thinking>..</thinking> format and your respond
should be in the <output>..</output> format.
"""
user_prompt="""
## Instructions:
{}
## Summary:
{}
"""
url="https://8000-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict"
payload = { "user_prompt":user_prompt.format(state['single_query'],state['summary'])}
response = requests.post(url, data=payload)
return {'final_response':response.json()['output'][0]}
# messages=[
# {'role':'system', 'content':system_prompt},
# ]
# messages+=[{'role':'user','content':user_prompt.format(state['single_query'],state['summary'])}]
# url = "https://11434-dep-01jx2gzqqspsvcvtgmabz6jkkz-d.cloudspaces.litng.ai/api/chat"
# s = requests.Session()
# s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"})
# response = s.post(url, json={
# "model": "hf.co/alibidaran/LLAMA3-intructive_reasoning_GGUF:Q8_0",
# "messages": messages,
# "options": {
# "temperature": 0.7 # Set your desired temperature here
# }
# })
# # Collect the assistant's output
# full_response = ""
# for line in response.iter_lines():
# if line:
# data = json.loads(line.decode("utf-8"))
# message = data.get("message", {})
# content = message.get("content", "")
# full_response += content
# if data.get("done", False):
# break
# response=client.chat.completions.create(
# model="gpt-4o-mini",
# # api_base="https://litellm.llemma.net/",
# # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA",
# messages =messages,
# temperature=0.7,
# top_p=0.95,)
#return {'final_response':full_response}
def end_node(state):
#print("Response:\n", state["final_response"])
return {'knowledge':state["summary"]}
class MyState(TypedDict):
#query: List[Dict[str, Any]]
embedded_query:list
knowledge: list
summary: str
def load_graph(embeddings,chunks):
graph_builder = StateGraph(state_schema=MyState)
# Add nodes
graph_builder.set_entry_point('get_knowledge')
graph_builder.add_node("get_knowledge", RunnableLambda(lambda state: get_knowledge(state,embeddings,chunks,method='cosine')))
graph_builder.add_node("summarise", RunnableLambda(summerise_knowledge))
#graph_builder.add_node('instructuons', RunnableLambda(making_instructions))
#graph_builder.add_node("respond", RunnableLambda(respond))
graph_builder.add_node("end", RunnableLambda(end_node))
# Add edges
graph_builder.add_edge("get_knowledge", "summarise")
#graph_builder.add_edge("summarise", "respond")
#graph_builder.add_edge("instructuons",'respond')
graph_builder.add_edge("summarise", "end")
# Compile the graph
# graph = graph_builder.compile()
return graph_builder |