Spaces:
Sleeping
Sleeping
Update src/streamlit_app.py
Browse files- src/streamlit_app.py +221 -38
src/streamlit_app.py
CHANGED
@@ -1,40 +1,223 @@
|
|
1 |
-
|
2 |
-
import numpy as np
|
3 |
-
import pandas as pd
|
4 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from openai import OpenAI
|
|
|
|
|
2 |
import streamlit as st
|
3 |
+
import openai
|
4 |
+
import os
|
5 |
+
import time
|
6 |
+
#from roles import *
|
7 |
+
from langchain_community.document_loaders import PyPDFLoader
|
8 |
+
import tempfile
|
9 |
+
from RAG import load_graph,text_splitter
|
10 |
+
import torch
|
11 |
+
from sentence_transformers import SentenceTransformer
|
12 |
+
import torch
|
13 |
+
import uuid
|
14 |
+
import re
|
15 |
+
import requests
|
16 |
+
from cloudhands import CloudHandsPayment
|
17 |
+
from database_center import db_transaction
|
18 |
+
device='cuda' if torch.cuda.is_available() else 'cpu'
|
19 |
|
20 |
+
global chat_messages
|
21 |
+
chat_messages=[]
|
22 |
+
outputs=[]
|
23 |
+
# Set your OpenAI API key here or use environment variable
|
24 |
+
payment_key=os.environ['Payment_Key']
|
25 |
+
|
26 |
+
def complete_payment():
|
27 |
+
if st.session_state.token :
|
28 |
+
chPay=st.session_state.chPay
|
29 |
+
try:
|
30 |
+
result = chPay.charge(
|
31 |
+
charge=0.5,
|
32 |
+
event_name="Sample cloudhands charge",
|
33 |
+
)
|
34 |
+
st.success(f"You payment is succeeded")
|
35 |
+
st.session_state.transaction_id=result.transaction_id
|
36 |
+
st.session_state.db_transaction.add({
|
37 |
+
'id':str(uuid.uuid4()),
|
38 |
+
'app':'app_title',
|
39 |
+
'transaction-id':result.transaction_id,
|
40 |
+
'price':0.5
|
41 |
+
|
42 |
+
})
|
43 |
+
except Exception as e:
|
44 |
+
st.error(f"Charge failed: {e}")
|
45 |
+
else:
|
46 |
+
st.error('Please generate your Tokens.')
|
47 |
+
|
48 |
+
|
49 |
+
|
50 |
+
|
51 |
+
@st.dialog("Payment link")
|
52 |
+
def pay():
|
53 |
+
chPay = st.session_state.chPay
|
54 |
+
|
55 |
+
# Step 1: Show auth link only once
|
56 |
+
auth_url = chPay.get_authorization_url()
|
57 |
+
st.link_button("Authenticate", url=auth_url)
|
58 |
+
|
59 |
+
# Step 2: User pastes the code
|
60 |
+
code = st.text_input("Place your code")
|
61 |
+
|
62 |
+
if st.button("Exchange Code"):
|
63 |
+
try:
|
64 |
+
token = chPay.exchange_code_for_token(code)
|
65 |
+
st.session_state.token = token
|
66 |
+
st.success("Code exchanged successfully! Token stored.")
|
67 |
+
except Exception as e:
|
68 |
+
st.error(f"Failed: {e}")
|
69 |
+
|
70 |
+
def embed_document(file_text):
|
71 |
+
chunks=text_splitter.split_text(file_text)
|
72 |
+
#embedded=[]
|
73 |
+
embeddings=st.session_state.encoder.encode(chunks, convert_to_tensor=True, show_progress_bar=True)
|
74 |
+
embeddings = embeddings.cpu().numpy()
|
75 |
+
|
76 |
+
#embeddings=torch.concatenate(embedded).cpu().numpy()
|
77 |
+
#embeddings=embeddings.cpu().numpy()
|
78 |
+
#print(embedded)
|
79 |
+
return embeddings,chunks
|
80 |
+
|
81 |
+
|
82 |
+
def embed_sentence(text):
|
83 |
+
embeddings = st.session_state.encoder.encode([text], convert_to_tensor=True, show_progress_bar=True)
|
84 |
+
return embeddings.cpu().tolist()
|
85 |
+
|
86 |
+
|
87 |
+
|
88 |
+
def stream_response():
|
89 |
+
for char in extract_output(response).split(" "):
|
90 |
+
yield char+" "
|
91 |
+
time.sleep(0.1) # Simulate a delay
|
92 |
+
|
93 |
+
def stream_thoughts():
|
94 |
+
for char in extract_thinking(response).split(" "):
|
95 |
+
yield char+" "
|
96 |
+
time.sleep(0.1) # Simulate a delay
|
97 |
+
|
98 |
+
def get_text(uploaded_file):
|
99 |
+
# Save uploaded file to a temporary file
|
100 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix=".pdf") as tmp_file:
|
101 |
+
tmp_file.write(uploaded_file.read())
|
102 |
+
tmp_path = tmp_file.name
|
103 |
+
loader = PyPDFLoader(tmp_path)
|
104 |
+
pages = loader.load()
|
105 |
+
text = "\n".join([page.page_content for page in pages])
|
106 |
+
return text
|
107 |
+
|
108 |
+
|
109 |
+
def respond_chat(text):
|
110 |
+
|
111 |
+
url="https://8000-01k3gce7dwxsk16d7dd40n75xb.cloudspaces.litng.ai/predict"
|
112 |
+
payload = { "user_prompt":text}
|
113 |
+
headers = {"Content-Type": "application/json"}
|
114 |
+
response = requests.post(url, data=payload)
|
115 |
+
|
116 |
+
if response.status_code == 200:
|
117 |
+
complete_payment()
|
118 |
+
if st.session_state.transaction_id:
|
119 |
+
return response.json()['output'][0]
|
120 |
+
|
121 |
+
def extract_thinking(text: str) -> str:
|
122 |
+
"""
|
123 |
+
Extracts content inside <thinking>...</thinking> tags.
|
124 |
+
Returns the first match or an empty string if not found.
|
125 |
+
"""
|
126 |
+
match = re.search(r"<thinking>(.*?)</thinking>", text, re.DOTALL | re.IGNORECASE)
|
127 |
+
return match.group(1).strip() if match else ""
|
128 |
+
|
129 |
+
def extract_output(text: str) -> str:
|
130 |
+
"""
|
131 |
+
Extracts content inside <output>...</output> tags.
|
132 |
+
Returns the first match or an empty string if not found.
|
133 |
+
"""
|
134 |
+
match = re.search(r"<output>(.*?)</output>", text, re.DOTALL | re.IGNORECASE)
|
135 |
+
return match.group(1).strip() if match else ""
|
136 |
+
|
137 |
+
|
138 |
+
|
139 |
+
# Dropdown for model selection
|
140 |
+
if 'doc_flag' not in st.session_state:
|
141 |
+
st.session_state.doc_flag = False
|
142 |
+
if 'flag' not in st.session_state:
|
143 |
+
st.session_state.flag = False
|
144 |
+
if 'encoder' not in st.session_state:
|
145 |
+
st.session_state.encoder = SentenceTransformer("all-MiniLM-L6-v2").to(device)
|
146 |
+
if 'file_text' not in st.session_state:
|
147 |
+
st.session_state.file_text = ""
|
148 |
+
if "chPay" not in st.session_state:
|
149 |
+
st.session_state.chPay = CloudHandsPayment(
|
150 |
+
author_key=payment_key
|
151 |
+
)
|
152 |
+
|
153 |
+
if "token" not in st.session_state:
|
154 |
+
st.session_state.token = None
|
155 |
+
|
156 |
+
if 'db_transaction' not in st.session_state:
|
157 |
+
st.session_state.db_transaction = db_transaction
|
158 |
+
if 'embeddings' not in st.session_state:
|
159 |
+
st.session_state.embeddings = None
|
160 |
+
if 'chunks' not in st.session_state:
|
161 |
+
st.session_state.chunks = None
|
162 |
+
|
163 |
+
# Sidebar document upload
|
164 |
+
st.sidebar.title("Uploading your document π")
|
165 |
+
uploaded_file = st.sidebar.file_uploader(
|
166 |
+
"Upload your document π",
|
167 |
+
type=["pdf"],
|
168 |
+
label_visibility="collapsed"
|
169 |
+
)
|
170 |
+
upload_button=st.sidebar.button("Upload Document")
|
171 |
+
if upload_button:
|
172 |
+
if uploaded_file is None:
|
173 |
+
st.warning("Please upload a PDF file.")
|
174 |
+
st.session_state.doc_flag = False
|
175 |
+
else:
|
176 |
+
file_text = get_text(uploaded_file)
|
177 |
+
st.session_state.file_text = file_text
|
178 |
+
embeddings,chunks = embed_document(file_text)
|
179 |
+
st.session_state.embeddings = embeddings
|
180 |
+
st.session_state.chunks = chunks
|
181 |
+
st.session_state.doc_flag = True
|
182 |
+
|
183 |
+
st.sidebar.write("Before making the your faviorate charecter sound, authenicate your code")
|
184 |
+
Authenication=st.sidebar.button('Authenicate')
|
185 |
+
if Authenication:
|
186 |
+
pay()
|
187 |
+
|
188 |
+
st.title("Virtual Supervisor")
|
189 |
+
#subject=st.pills('Select your subject',list(roles.keys()),selection_mode='single')
|
190 |
+
st.title("Plaito")
|
191 |
+
st.write("Chat with our reasoning model and ask your questions. The model show you it's chain of thoughts and final answer.")
|
192 |
+
text=st.text_area("Ask your question:", height=100)
|
193 |
+
document_button=st.pills("Ask based on Documents", ['search'], selection_mode="single")
|
194 |
+
generate_button=st.button("Generate Response")
|
195 |
+
if generate_button:
|
196 |
+
if document_button:
|
197 |
+
graph=load_graph(st.session_state.embeddings,st.session_state.chunks)
|
198 |
+
graph=graph.compile()
|
199 |
+
initial_state = {
|
200 |
+
"embedded_query":embed_sentence(text),
|
201 |
+
"knowledge": [],
|
202 |
+
"summary": "",
|
203 |
+
"final_response": None,}
|
204 |
+
final_state = graph.invoke(initial_state)
|
205 |
+
updated_text = f"""
|
206 |
+
Then respond to the client. Also follow the retrived information in the ##Summary section.
|
207 |
+
## Instructions:
|
208 |
+
{text}
|
209 |
+
## Summary:
|
210 |
+
{final_state['summary']}
|
211 |
+
"""
|
212 |
+
complete_payment()
|
213 |
+
response=respond_chat(updated_text)
|
214 |
+
|
215 |
+
else:
|
216 |
+
response=respond_chat(text)
|
217 |
+
col1,col2=st.columns([2,1])
|
218 |
+
with col2:
|
219 |
+
st.write("### Thought Process")
|
220 |
+
st.write_stream(stream_thoughts())
|
221 |
+
with col1:
|
222 |
+
st.write("### Response")
|
223 |
+
st.write_stream(stream_response())
|