#from texts import * from langgraph.graph import StateGraph from langchain_core.runnables import RunnableLambda from openai import OpenAI import os import openai from langchain.text_splitter import RecursiveCharacterTextSplitter import torch from typing import TypedDict import requests import json from typing import List, Dict, Any from sklearn.cluster import KMeans import numpy as np file_text='' text_splitter = RecursiveCharacterTextSplitter( chunk_size=1024, chunk_overlap=256, length_function=len ) openai.api_key = os.getenv('OPENAI_API_KEY') client=OpenAI() # def get_embedding(text, model="text-embedding-3-small"): # # response = openai.embeddings.create( # # input=[text], # # model=model # # ) # embeddings = encoder.encode([text], convert_to_tensor=True, show_progress_bar=True) # embeddings = embeddings.cpu().numpy() # return embeddings # text=chuncked_text+Focusing_text+planning_text+Focusing_text2+Evoking_text # chunks=text_splitter.split_text(text) # embeddings=[get_embedding(chunk) for chunk in chunks] # embedds=np.array(embeddings) # kmeans=KMeans(n_clusters=3,max_iter=1000) # kmeans.fit(embedds) # def embed_document(state,file_text): # chunks=text_splitter.split_text(file_text) # embeddings=encoder.encode(chunks, convert_to_tensor=True, show_progress_bar=False) # embeddings=embeddings.cpu().numpy() # print(len(embeddings)) # return {'single_query':state['single_query'],'embeddings':embeddings,'chunks':chunks} def get_knowledge(state,embeddings,chunks,method='cosine'): query_embedding = state['embedded_query'] if method=='cosine': # Convert to tensor query_tensor = torch.tensor(query_embedding, dtype=torch.float32).to('cpu') # shape: [embedding_dim] #embeddings_tensor = torch.tensor(embeddings, dtype=torch.float32).to('cuda') # shape: [num_chunks, embedding_dim] # Normalize embeddings_tensor=torch.from_numpy(embeddings).to('cpu') query_tensor = query_tensor / query_tensor.norm() embeddings_tensor = embeddings_tensor / embeddings_tensor.norm(dim=1, keepdim=True) # Compute cosine similarity similarities = torch.matmul(query_tensor, embeddings_tensor.T) print(similarities.shape) top_k = 5 top_k_indices = torch.topk(similarities, k=top_k).indices print(top_k_indices) return {'embedded_query':state['embedded_query'],'knowledge':[chunks[i] for i in top_k_indices.squeeze(0)]} # elif method=='Kmeans': # query_emb = np.array(get_embedding(state['single_query'])) # # Predict the closest cluster # cluster_idx = kmeans.predict([query_emb])[0] # # Find indices of documents in this cluster # cluster_doc_indices = np.where(kmeans.labels_ == cluster_idx)[0] # # Compute L2 (Euclidean) distance within the cluster # cluster_embs = np.array(embeddings)[cluster_doc_indices] # distances = np.linalg.norm(cluster_embs - query_emb, axis=1) # top_k=5 # # Get top_k most similar documents (smallest distances) # top_indices = distances.argsort()[:top_k] # return {'single_query':state['single_query'],'knowledge':[chunks[cluster_doc_indices[i]] for i in top_indices]} def summerise_knowledge(state): prompt=""" [system] ## Instructions: You are skillfull text analysist. Summerise the extracted information from uploaded file by the user. Make your summary as concice as possible. ### Inputs: Extracted Knowledge: {} ### Output: """ text="" chunks=state['knowledge'] for chunk in chunks: text+=chunk response=client.chat.completions.create( model="gpt-5-mini", messages =[{'role':'user','content':prompt.format(text)}]) # url = "https://11434-dep-01k080agynagw33vkkb9xfxpkb-d.cloudspaces.litng.ai/api/chat" # s = requests.Session() # s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"}) # response = s.post(url, json={ # "model": "hf.co/alibidaran/LLAMA3-instructive_reasoning-GGUF:Q8_0", # "messages":[{'role':'user','content':prompt.format(text)}] , # "options": { # "temperature": 0.7, # "top_p": 0.95 # Set your desired top_p here # } # }) # full_response = "" # for line in response.iter_lines(): # if line: # data = json.loads(line.decode("utf-8")) # message = data.get("message", {}) # content = message.get("content", "") # full_response += content # if data.get("done", Falsurl = "https://800-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict"): # break print(response.choices[0].message) return {'embedded_query':state['embedded_query'],'summary':response.choices[0].message.content} #return {'single_query':state['single_query'],'summary':full_response} # def making_instructions(state): # prompt=""" # [system] # ## Instructions: # You are skill full certificated psychologist. Create an instruction for the practitioner to help them how to behaive and respond to the client effectively. # ## Input: # [summary] # {} # ### Output: # """ # response=client.chat.completions.create( # model="gpt-4o-mini", # # api_base="https://litellm.llemma.net/", # # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA", # messages =[{'role':'user','content':prompt.format(state['summary'])}], # temperature=0.7, # top_p=0.95, # max_tokens=800) # return {'query':state['query'],'instruction':response.choices[0].message} def respond(state): system_prompt=""" You are a reasonable expert who thinks and answer the users question. Before respond first think and create a chain of thoughts in your mind. Then respond to the client. Also follow the retrived information in the ##Summary section. Your chain of thought and reflection must be in .. format and your respond should be in the .. format. """ user_prompt=""" ## Instructions: {} ## Summary: {} """ url="https://8000-01jy9pekct42qjmqxcap35g81s.cloudspaces.litng.ai/predict" payload = { "user_prompt":user_prompt.format(state['single_query'],state['summary'])} response = requests.post(url, data=payload) return {'final_response':response.json()['output'][0]} # messages=[ # {'role':'system', 'content':system_prompt}, # ] # messages+=[{'role':'user','content':user_prompt.format(state['single_query'],state['summary'])}] # url = "https://11434-dep-01jx2gzqqspsvcvtgmabz6jkkz-d.cloudspaces.litng.ai/api/chat" # s = requests.Session() # s.headers.update({"Authorization": "Bearer bf54d08f-e88a-4a4a-bd14-444c984eaa6e"}) # response = s.post(url, json={ # "model": "hf.co/alibidaran/LLAMA3-intructive_reasoning_GGUF:Q8_0", # "messages": messages, # "options": { # "temperature": 0.7 # Set your desired temperature here # } # }) # # Collect the assistant's output # full_response = "" # for line in response.iter_lines(): # if line: # data = json.loads(line.decode("utf-8")) # message = data.get("message", {}) # content = message.get("content", "") # full_response += content # if data.get("done", False): # break # response=client.chat.completions.create( # model="gpt-4o-mini", # # api_base="https://litellm.llemma.net/", # # api_key="sk-ZsStrG5lPoGnCHZl4NgcOA", # messages =messages, # temperature=0.7, # top_p=0.95,) #return {'final_response':full_response} def end_node(state): #print("Response:\n", state["final_response"]) return {'knowledge':state["summary"]} class MyState(TypedDict): #query: List[Dict[str, Any]] embedded_query:list knowledge: list summary: str def load_graph(embeddings,chunks): graph_builder = StateGraph(state_schema=MyState) # Add nodes graph_builder.set_entry_point('get_knowledge') graph_builder.add_node("get_knowledge", RunnableLambda(lambda state: get_knowledge(state,embeddings,chunks,method='cosine'))) graph_builder.add_node("summarise", RunnableLambda(summerise_knowledge)) #graph_builder.add_node('instructuons', RunnableLambda(making_instructions)) #graph_builder.add_node("respond", RunnableLambda(respond)) graph_builder.add_node("end", RunnableLambda(end_node)) # Add edges graph_builder.add_edge("get_knowledge", "summarise") #graph_builder.add_edge("summarise", "respond") #graph_builder.add_edge("instructuons",'respond') graph_builder.add_edge("summarise", "end") # Compile the graph # graph = graph_builder.compile() return graph_builder