Spaces:
Sleeping
Sleeping
File size: 1,659 Bytes
c3fa335 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import requests
from bs4 import BeautifulSoup
import pandas as pd
import gradio as gr
# 스크래핑 함수
def scrape_naver_stock():
url = "https://finance.naver.com/sise/sise_rise.naver?sosok=1"
response = requests.get(url)
response.encoding = 'euc-kr'
# BeautifulSoup으로 HTML 파싱
soup = BeautifulSoup(response.text, 'html.parser')
table = soup.find('table', class_='type_2')
# 테이블에서 데이터 추출
rows = table.find_all('tr')
data = []
for row in rows:
cols = row.find_all('td')
if len(cols) > 1:
rank = cols[0].text.strip()
name = cols[1].text.strip()
price = cols[2].text.strip()
diff = cols[3].text.strip()
change_rate = cols[4].text.strip()
volume = cols[5].text.strip()
buy_price = cols[6].text.strip()
sell_price = cols[7].text.strip()
buy_volume = cols[8].text.strip()
sell_volume = cols[9].text.strip()
per = cols[10].text.strip()
roe = cols[11].text.strip()
data.append([rank, name, price, diff, change_rate, volume, buy_price, sell_price, buy_volume, sell_volume, per, roe])
# Pandas DataFrame으로 변환
df = pd.DataFrame(data, columns=['순위', '종목명', '현재가', '전일비', '등락률', '거래량', '매수호가', '매도호가', '매수총잔량', '매도총잔량', 'PER', 'ROE'])
return df
# 그라디오 UI
def display_stocks():
df = scrape_naver_stock()
return df
iface = gr.Interface(fn=display_stocks, inputs=[], outputs="dataframe")
iface.launch()
|