Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from huggingface_hub import InferenceClient | |
| import os | |
| import openai # OpenAI API를 사용하기 위해 추가 | |
| MODELS = { | |
| "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta", | |
| "DeepSeek Coder V2": "deepseek-ai/DeepSeek-Coder-V2-Instruct", | |
| "Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct", | |
| "Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct", | |
| "Microsoft Phi-3-mini-4k": "microsoft/Phi-3-mini-4k-instruct", | |
| "Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3", | |
| "Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO", | |
| "Cohere Command R+": "CohereForAI/c4ai-command-r-plus", | |
| "Cohere Aya-23-35B": "CohereForAI/aya-23-35B", | |
| "GPT-4o-mini": "openai/gpt-4o-mini" # GPT-4o-mini 모델 추가 | |
| } | |
| # OpenAI API 키 설정 | |
| openai.api_key = os.getenv("OPENAI_API_KEY") | |
| def get_client(model_name): | |
| if model_name == "GPT-4o-mini": | |
| return None # GPT-4o-mini 모델은 HuggingFace 클라이언트가 필요 없음 | |
| model_id = MODELS[model_name] | |
| hf_token = os.getenv("HF_TOKEN") | |
| if not hf_token: | |
| raise ValueError("HF_TOKEN environment variable is required") | |
| return InferenceClient(model_id, token=hf_token) | |
| def respond( | |
| message, | |
| chat_history, | |
| model_name, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| system_message, | |
| ): | |
| try: | |
| if model_name == "GPT-4o-mini": | |
| assistant_message = call_openai_api(message, system_message, max_tokens, temperature, top_p) | |
| chat_history.append((message, assistant_message)) | |
| yield chat_history | |
| return | |
| client = get_client(model_name) | |
| except ValueError as e: | |
| chat_history.append((message, str(e))) | |
| return chat_history | |
| messages = [{"role": "system", "content": system_message}] | |
| for human, assistant in chat_history: | |
| messages.append({"role": "user", "content": human}) | |
| messages.append({"role": "assistant", "content": assistant}) | |
| messages.append({"role": "user", "content": message}) | |
| try: | |
| if "Cohere" in model_name: | |
| # Cohere 모델을 위한 비스트리밍 처리 | |
| response = client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| assistant_message = response.choices[0].message.content | |
| chat_history.append((message, assistant_message)) | |
| yield chat_history | |
| else: | |
| # 다른 모델들을 위한 스트리밍 처리 | |
| stream = client.chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| stream=True, | |
| ) | |
| partial_message = "" | |
| for response in stream: | |
| if response.choices[0].delta.content is not None: | |
| partial_message += response.choices[0].delta.content | |
| if len(chat_history) > 0 and chat_history[-1][0] == message: | |
| chat_history[-1] = (message, partial_message) | |
| else: | |
| chat_history.append((message, partial_message)) | |
| yield chat_history | |
| except Exception as e: | |
| error_message = f"An error occurred: {str(e)}" | |
| chat_history.append((message, error_message)) | |
| yield chat_history | |
| def call_openai_api(content, system_message, max_tokens, temperature, top_p): | |
| response = openai.ChatCompletion.create( | |
| model="gpt-4o-mini", # GPT-4o-mini 모델 사용 | |
| messages=[ | |
| {"role": "system", "content": system_message}, | |
| {"role": "user", "content": content}, | |
| ], | |
| max_tokens=max_tokens, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ) | |
| return response.choices[0].message['content'] | |
| def clear_conversation(): | |
| return [] | |
| with gr.Blocks() as demo: | |
| gr.Markdown("# Prompting AI Chatbot") | |
| gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.") | |
| with gr.Row(): | |
| with gr.Column(scale=1): | |
| model_name = gr.Radio( | |
| choices=list(MODELS.keys()), | |
| label="Language Model", | |
| value="Zephyr 7B Beta" | |
| ) | |
| max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens") | |
| temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") | |
| top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") | |
| system_message = gr.Textbox( | |
| value="""반드시 한글로 답변할 것. | |
| 너는 최고의 비서이다. | |
| 내가 요구하는것들을 최대한 자세하고 정확하게 답변하라. | |
| """, | |
| label="System Message", | |
| lines=3 | |
| ) | |
| with gr.Column(scale=2): | |
| chatbot = gr.Chatbot() | |
| msg = gr.Textbox(label="메세지를 입력하세요") | |
| with gr.Row(): | |
| submit_button = gr.Button("전송") | |
| clear_button = gr.Button("대화 내역 지우기") | |
| msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
| submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot) | |
| clear_button.click(clear_conversation, outputs=chatbot, queue=False) | |
| if __name__ == "__main__": | |
| demo.launch() | |