Spaces:
Runtime error
Runtime error
Commit
·
565d9ed
1
Parent(s):
55d7045
Update app.py
Browse files
app.py
CHANGED
@@ -256,11 +256,11 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
256 |
gray_scale = Image.fromarray(scaled_image)
|
257 |
final_image = gray_scale.convert('RGB')
|
258 |
final_image.resize((200,200))
|
259 |
-
final_image.save(r'
|
260 |
feature_extractor = FeatureExtractor(model_name_or_path)
|
261 |
model = LoadModel(model_name_or_path)
|
262 |
if name_of_files[i].endswith('.dcm'):
|
263 |
-
img = Image.open(r'
|
264 |
else:
|
265 |
img = Image.open(uploaded_file[i])
|
266 |
img_out = img.resize((224,224))
|
@@ -317,8 +317,8 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
317 |
reshape_transform=reshape_transform_vit_huggingface,
|
318 |
n_components=4,
|
319 |
top_k=4))
|
320 |
-
# dff_image.save(r"
|
321 |
-
# gradcam_image.save(r"
|
322 |
topK = print_top_categories(model, tensor_resized)
|
323 |
df = pd.DataFrame.from_dict(topK, orient='index')
|
324 |
list_to_be_sorted= []
|
@@ -353,7 +353,7 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
353 |
new_width = 2 * width // 3
|
354 |
cropped_image = image.crop((0, 0, new_width, height))
|
355 |
cropped_image.save(r"./Normal/{}".format(image_path))
|
356 |
-
#dff_image.save(r"
|
357 |
elif list_to_be_sorted[0]['name'] == "squamous.cell":
|
358 |
dff_image.save(r"./Squamous cell carcinoma/{}".format(name_of_files_new[i]))
|
359 |
image_path = name_of_files_new[i]
|
@@ -378,7 +378,7 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
378 |
with col1:
|
379 |
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
380 |
# Add the second subheader to the second column
|
381 |
-
folder_path = r"
|
382 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
383 |
# Display the images in a loop
|
384 |
for i in range(0, len(image_files), 2):
|
@@ -397,7 +397,7 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
397 |
count_classes.append("Adeno")
|
398 |
with col2:
|
399 |
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
|
400 |
-
folder_path = r"
|
401 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
402 |
# Display the images in a loop
|
403 |
for i in range(0, len(image_files), 2):
|
@@ -421,7 +421,7 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
421 |
|
422 |
with col5:
|
423 |
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
424 |
-
folder_path = r"
|
425 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
426 |
# Display the images in a loop
|
427 |
for i in range(0, len(image_files), 2):
|
@@ -440,7 +440,7 @@ elif tabs == 'Upload': #and count_system () != 1:
|
|
440 |
count_classes.append("Large")
|
441 |
with col6:
|
442 |
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
443 |
-
folder_path = r"
|
444 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
445 |
# Display the images in a loop
|
446 |
for i in range(0, len(image_files), 2):
|
|
|
256 |
gray_scale = Image.fromarray(scaled_image)
|
257 |
final_image = gray_scale.convert('RGB')
|
258 |
final_image.resize((200,200))
|
259 |
+
final_image.save(r'./dcm_png/{}.png'.format(name_of_files[i]))
|
260 |
feature_extractor = FeatureExtractor(model_name_or_path)
|
261 |
model = LoadModel(model_name_or_path)
|
262 |
if name_of_files[i].endswith('.dcm'):
|
263 |
+
img = Image.open(r'./dcm_png/{}.png'.format(name_of_files[i]))
|
264 |
else:
|
265 |
img = Image.open(uploaded_file[i])
|
266 |
img_out = img.resize((224,224))
|
|
|
317 |
reshape_transform=reshape_transform_vit_huggingface,
|
318 |
n_components=4,
|
319 |
top_k=4))
|
320 |
+
# dff_image.save(r"./save_images/dff_image.png")
|
321 |
+
# gradcam_image.save(r"./save_images/gradcam_image.png")
|
322 |
topK = print_top_categories(model, tensor_resized)
|
323 |
df = pd.DataFrame.from_dict(topK, orient='index')
|
324 |
list_to_be_sorted= []
|
|
|
353 |
new_width = 2 * width // 3
|
354 |
cropped_image = image.crop((0, 0, new_width, height))
|
355 |
cropped_image.save(r"./Normal/{}".format(image_path))
|
356 |
+
#dff_image.save(r"./Normal/{}".format(name_of_files_new[i]))
|
357 |
elif list_to_be_sorted[0]['name'] == "squamous.cell":
|
358 |
dff_image.save(r"./Squamous cell carcinoma/{}".format(name_of_files_new[i]))
|
359 |
image_path = name_of_files_new[i]
|
|
|
378 |
with col1:
|
379 |
st.markdown("<h2 style='text-align: center; border: 2px solid #5370c6; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Adenocarcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
380 |
# Add the second subheader to the second column
|
381 |
+
folder_path = r"./Adenocarcinoma"
|
382 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
383 |
# Display the images in a loop
|
384 |
for i in range(0, len(image_files), 2):
|
|
|
397 |
count_classes.append("Adeno")
|
398 |
with col2:
|
399 |
st.markdown("<h2 style='text-align: center; border: 2px solid green; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Normal </h2>".format(centered_style), unsafe_allow_html=True)
|
400 |
+
folder_path = r"./Normal"
|
401 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
402 |
# Display the images in a loop
|
403 |
for i in range(0, len(image_files), 2):
|
|
|
421 |
|
422 |
with col5:
|
423 |
st.markdown("<h2 style='text-align: center; border: 2px solid orange; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Large cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
424 |
+
folder_path = r"./Large cell carcinoma"
|
425 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
426 |
# Display the images in a loop
|
427 |
for i in range(0, len(image_files), 2):
|
|
|
440 |
count_classes.append("Large")
|
441 |
with col6:
|
442 |
st.markdown("<h2 style='text-align: center; border: 2px solid #f16565; border-radius: 5px; padding: 15px; background-color: white; color: black;' > Squamous cell carcinoma </h2>".format(centered_style), unsafe_allow_html=True)
|
443 |
+
folder_path = r"./Squamous cell carcinoma"
|
444 |
image_files = [f for f in os.listdir(folder_path) if f.endswith('.png') or f.endswith('.jpg')]
|
445 |
# Display the images in a loop
|
446 |
for i in range(0, len(image_files), 2):
|