Spaces:
Sleeping
Sleeping
from .BaseLLM import BaseLLM | |
from peft import PeftModel | |
import os | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
class LocalModel(BaseLLM): | |
def __init__(self, model, adapter_path = None): | |
super(LocalModel, self).__init__() | |
model_name = model | |
self.model = AutoModelForCausalLM.from_pretrained( | |
model_name, | |
torch_dtype="auto", | |
device_map="auto", | |
) | |
if isinstance(adapter_path,str): | |
self.model = PeftModel.from_pretrained(self.model, adapter_path) | |
elif isinstance(adapter_path,list): | |
for path in adapter_path: | |
self.model = PeftModel.from_pretrained(self.model, path) | |
self.tokenizer = AutoTokenizer.from_pretrained(model_name) | |
self.model_name = model | |
self.messages = [] | |
def initialize_message(self): | |
self.messages = [] | |
def ai_message(self, payload): | |
self.messages.append({"role": "ai", "content": payload}) | |
def system_message(self, payload): | |
self.messages.append({"role": "system", "content": payload}) | |
def user_message(self, payload): | |
self.messages.append({"role": "user", "content": payload}) | |
def get_response(self,temperature = 0.8): | |
text = self.tokenizer.apply_chat_template( | |
self.messages, | |
tokenize=False, | |
add_generation_prompt=True | |
) | |
model_inputs = self.tokenizer([text], return_tensors="pt").to(self.model.device) | |
generated_ids = self.model.generate( | |
**model_inputs, | |
max_new_tokens=512 | |
) | |
generated_ids = [ | |
output_ids[len(input_ids):] for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids) | |
] | |
response = self.tokenizer.batch_decode(generated_ids, skip_special_tokens=True)[0] | |
return response | |
def chat(self,text,temperature = 0.8): | |
self.initialize_message() | |
self.user_message(text) | |
response = self.get_response(temperature = temperature) | |
return response | |
def print_prompt(self): | |
for message in self.messages: | |
print(message) |