Spaces:
Build error
Build error
# %%writefile app.py | |
import streamlit as st | |
import matplotlib.pyplot as plt | |
import torch | |
from transformers import AutoTokenizer, DataCollatorWithPadding, AutoModelForSequenceClassification, AdamW | |
from datasets import load_dataset | |
from evaluate import load as load_metric | |
from torch.utils.data import DataLoader | |
import random | |
DEVICE = torch.device("cpu") | |
NUM_ROUNDS = 3 | |
def load_data(dataset_name): | |
raw_datasets = load_dataset(dataset_name) | |
raw_datasets = raw_datasets.shuffle(seed=42) | |
del raw_datasets["unsupervised"] | |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") | |
def tokenize_function(examples): | |
return tokenizer(examples["text"], truncation=True) | |
train_population = random.sample(range(len(raw_datasets["train"])), 20) | |
test_population = random.sample(range(len(raw_datasets["test"])), 20) | |
tokenized_datasets = raw_datasets.map(tokenize_function, batched=True) | |
tokenized_datasets["train"] = tokenized_datasets["train"].select(train_population) | |
tokenized_datasets["test"] = tokenized_datasets["test"].select(test_population) | |
tokenized_datasets = tokenized_datasets.remove_columns("text") | |
tokenized_datasets = tokenized_datasets.rename_column("label", "labels") | |
data_collator = DataCollatorWithPadding(tokenizer=tokenizer) | |
trainloader = DataLoader(tokenized_datasets["train"], shuffle=True, batch_size=32, collate_fn=data_collator) | |
testloader = DataLoader(tokenized_datasets["test"], batch_size=32, collate_fn=data_collator) | |
return trainloader, testloader | |
def train(net, trainloader, epochs): | |
optimizer = AdamW(net.parameters(), lr=5e-5) | |
net.train() | |
for _ in range(epochs): | |
for batch in trainloader: | |
batch = {k: v.to(DEVICE) for k, v in batch.items()} | |
outputs = net(**batch) | |
loss = outputs.loss | |
loss.backward() | |
optimizer.step() | |
optimizer.zero_grad() | |
def test(net, testloader): | |
metric = load_metric("accuracy") | |
loss = 0 | |
net.eval() | |
for batch in testloader: | |
batch = {k: v.to(DEVICE) for k, v in batch.items()} | |
with torch.no_grad(): | |
outputs = net(**batch) | |
logits = outputs.logits | |
loss += outputs.loss.item() | |
predictions = torch.argmax(logits, dim=-1) | |
metric.add_batch(predictions=predictions, references=batch["labels"]) | |
loss /= len(testloader.dataset) | |
accuracy = metric.compute()["accuracy"] | |
return loss, accuracy | |
net = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased", num_labels=2).to(DEVICE) | |
def main(): | |
st.write("## Federated Learning with dynamic models and datasets for mobile devices") | |
dataset_name = st.selectbox("Dataset", ["imdb", "amazon_polarity", "ag_news"]) | |
model_name = st.selectbox("Model", ["bert-base-uncased", "distilbert-base-uncased"]) | |
NUM_CLIENTS = st.slider("Number of Clients", min_value=1, max_value=10, value=2) | |
NUM_ROUNDS = st.slider("Number of Rounds", min_value=1, max_value=10, value=3) | |
trainloader, testloader = load_data(dataset_name) | |
if st.button("Start Training"): | |
round_losses = [] | |
round_accuracies = [] # Store accuracy values for each round | |
for round_num in range(1, NUM_ROUNDS + 1): | |
st.write(f"## Round {round_num}") | |
st.write("### Training Metrics for Each Client") | |
for client in range(1, NUM_CLIENTS + 1): | |
client_loss, client_accuracy = test(net, testloader) # Placeholder for actual client metrics | |
st.write(f"Client {client}: Loss: {client_loss}, Accuracy: {client_accuracy}") | |
st.write("### Accuracy Over Rounds") | |
round_accuracies.append(client_accuracy) # Append the accuracy for this round | |
plt.plot(range(1, round_num + 1), round_accuracies, marker='o') # Plot accuracy over rounds | |
plt.xlabel("Round") | |
plt.ylabel("Accuracy") | |
plt.title("Accuracy Over Rounds") | |
st.pyplot() | |
st.write("### Loss Over Rounds") | |
loss_value = random.random() # Placeholder for loss values | |
round_losses.append(loss_value) | |
rounds = list(range(1, round_num + 1)) | |
plt.plot(rounds, round_losses) | |
plt.xlabel("Round") | |
plt.ylabel("Loss") | |
plt.title("Loss Over Rounds") | |
st.pyplot() | |
st.success(f"Round {round_num} completed successfully!") | |
else: | |
st.write("Click the 'Start Training' button to start the training process.") | |
if __name__ == "__main__": | |
main() | |