File size: 10,972 Bytes
06cb2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
############################################
# neo4j_ingestion.py
############################################

import os
import csv
import uuid
import pandas as pd
from neo4j import GraphDatabase
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# ------------------------------------------------------------------------------
# CONFIGURE THESE TO MATCH YOUR ENVIRONMENT
# ------------------------------------------------------------------------------
NEO4J_URI = os.getenv('AURA_CONNECTION_URI')
NEO4J_USER = os.getenv('AURA_USERNAME')
NEO4J_PASS = os.getenv('AURA_PASSWORD')

if not all([NEO4J_URI, NEO4J_USER, NEO4J_PASS]):
    raise ValueError("Missing required Neo4j credentials in .env file")

# Update CSV_DIR to use absolute path
SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__))
CSV_DIR = os.path.join(SCRIPT_DIR, "niners_output")  # Updated to correct folder name
REL_CSV_DIR = os.path.join(SCRIPT_DIR, "relationship_csvs")

# Create directories if they don't exist
os.makedirs(CSV_DIR, exist_ok=True)
os.makedirs(REL_CSV_DIR, exist_ok=True)

# Filenames for each CSV
COMMUNITIES_FILE = "fan_communities.csv"
ROSTER_FILE = "roster.csv"
#SCHEDULE_FILE = "schedule.csv"
SCHEDULE_FILE = "schedule_with_result_embedding.csv"
FANS_FILE = "fans.csv"

print("Script directory:", SCRIPT_DIR)
print("CSV directory:", CSV_DIR)
print("Looking for files in:")
print(f"- {os.path.join(CSV_DIR, COMMUNITIES_FILE)}")
print(f"- {os.path.join(CSV_DIR, ROSTER_FILE)}")
print(f"- {os.path.join(CSV_DIR, SCHEDULE_FILE)}")
print(f"- {os.path.join(CSV_DIR, FANS_FILE)}")

# Add this after the file path prints:
print("\nChecking CSV column names:")
for file_name in [COMMUNITIES_FILE, ROSTER_FILE, SCHEDULE_FILE, FANS_FILE]:
    df = pd.read_csv(os.path.join(CSV_DIR, file_name))
    print(f"\n{file_name} columns:")
    print(df.columns.tolist())

# ------------------------------------------------------------------------------
# 1) Create Relationship CSVs from fans.csv
# ------------------------------------------------------------------------------
def create_relationship_csvs():
    """
    Reads fans.csv, which includes columns:
      - fan_id
      - favorite_players (string list)
      - community_memberships (string list)
    Expands these lists into separate relationship rows, which we export as:
      fan_player_rels.csv and fan_community_rels.csv
    """
    fans_path = os.path.join(CSV_DIR, FANS_FILE)
    df_fans = pd.read_csv(fans_path)

    fan_player_relationships = []
    fan_community_relationships = []

    for _, row in df_fans.iterrows():
        fan_id = row["fan_id"]

        # favorite_players (could be "['id1','id2']" or a single string)
        fav_players_raw = row.get("favorite_players", "[]")
        fav_players_list = parse_string_list(fav_players_raw)

        for pid in fav_players_list:
            fan_player_relationships.append({
                "start_id": fan_id,
                "end_id": pid,
                "relationship_type": "FAVORITE_PLAYER"
            })

        # community_memberships
        comm_memberships_raw = row.get("community_memberships", "[]")
        comm_list = parse_string_list(comm_memberships_raw)

        for cid in comm_list:
            fan_community_relationships.append({
                "start_id": fan_id,
                "end_id": cid,
                "relationship_type": "MEMBER_OF"
            })

    # Convert to DataFrames and write out to CSV
    if fan_player_relationships:
        df_fan_player = pd.DataFrame(fan_player_relationships)
        df_fan_player.to_csv(os.path.join(REL_CSV_DIR, "fan_player_rels.csv"), index=False)

    if fan_community_relationships:
        df_fan_community = pd.DataFrame(fan_community_relationships)
        df_fan_community.to_csv(os.path.join(REL_CSV_DIR, "fan_community_rels.csv"), index=False)

    print("Created relationship CSVs in:", REL_CSV_DIR)

def parse_string_list(raw_val):
    """
    Attempt to parse a Python-style list string (e.g. "['abc','def']")
    or return an empty list if parsing fails.
    """
    if isinstance(raw_val, str):
        try:
            parsed = eval(raw_val)
            if not isinstance(parsed, list):
                return []
            return parsed
        except:
            return []
    elif isinstance(raw_val, list):
        return raw_val
    else:
        return []

# ------------------------------------------------------------------------------
# 2) LOAD Node & Relationship CSVs into Neo4j
# ------------------------------------------------------------------------------
def clean_row_dict(row):
    """Convert pandas row to dict and replace NaN with None"""
    return {k: None if pd.isna(v) else v for k, v in row.items()}

def ingest_to_neo4j():
    """
    Connects to Neo4j, deletes existing data, creates constraints,
    loads node CSVs, then loads relationship CSVs.
    """
    driver = GraphDatabase.driver(NEO4J_URI, auth=(NEO4J_USER, NEO4J_PASS))

    with driver.session() as session:
        # (A) DELETE CURRENT CONTENTS
        session.run("MATCH (n) DETACH DELETE n")
        print("Cleared existing graph data.")

        # (B) Create uniqueness constraints - Updated with exact column name
        session.run("CREATE CONSTRAINT IF NOT EXISTS FOR (c:Community) REQUIRE c.fan_chapter_name IS UNIQUE")
        session.run("CREATE CONSTRAINT IF NOT EXISTS FOR (p:Player) REQUIRE p.player_id IS UNIQUE")
        session.run("CREATE CONSTRAINT IF NOT EXISTS FOR (g:Game) REQUIRE g.game_id IS UNIQUE")
        session.run("CREATE CONSTRAINT IF NOT EXISTS FOR (f:Fan) REQUIRE f.fan_id IS UNIQUE")
        print("Created/ensured constraints.")

        # 1) Communities - Updated to handle duplicates
        communities_df = pd.read_csv(os.path.join(CSV_DIR, COMMUNITIES_FILE))
        
        # Track duplicates
        duplicates = communities_df[communities_df['Fan Chapter Name'].duplicated(keep='first')]
        if not duplicates.empty:
            print(f"\nFound {len(duplicates)} duplicate Fan Chapter Names (keeping first occurrence only):")
            print(duplicates[['Fan Chapter Name']].to_string())
            
            # Export duplicates to CSV for reference
            duplicates.to_csv(os.path.join(CSV_DIR, 'duplicate_chapters.csv'), index=False)
        
        # Keep only first occurrence of each Fan Chapter Name
        communities_df = communities_df.drop_duplicates(subset=['Fan Chapter Name'], keep='first')
        
        # Process unique chapters
        for _, row in communities_df.iterrows():
            params = clean_row_dict(row)
            
            # Map the correct columns
            params["fan_chapter_name"] = params.pop("Fan Chapter Name", "") or ""
            params["city"] = params.pop("Meeting Location Address (City)", "") or ""
            params["state"] = params.pop("Meeting Location Address (State)", "") or ""
            params["email_contact"] = params.pop("Email Address", "") or ""
            params["meetup_info"] = f"{params.pop('Venue', '')} - {params.pop('Venue Location', '')}"

            session.run("""
                CREATE (c:Community {
                    fan_chapter_name: $fan_chapter_name,
                    city: $city,
                    state: $state,
                    email_contact: $email_contact,
                    meetup_info: $meetup_info
                })
            """, params)
        print(f"Imported {len(communities_df)} unique Communities.")

        # 2) Players - Updated with correct column names
        players_df = pd.read_csv(os.path.join(CSV_DIR, ROSTER_FILE))
        for _, row in players_df.iterrows():
            params = clean_row_dict(row)
            session.run("""
                CREATE (p:Player {
                    player_id: $player_id,
                    name: $Player,
                    position: $Pos,
                    jersey_number: toInteger($Number),
                    height: $HT,
                    weight: $WT,
                    college: $College,
                    years_in_nfl: toInteger($Exp)
                })
            """, params)
        print("Imported Players.")

        # 3) Games - Updated with correct column names
        games_df = pd.read_csv(os.path.join(CSV_DIR, SCHEDULE_FILE))
        for _, row in games_df.iterrows():
            params = clean_row_dict(row)
            session.run("""
                CREATE (g:Game {
                    game_id: $game_id,
                    date: $Date,
                    location: $Location,
                    home_team: $HomeTeam,
                    away_team: $AwayTeam,
                    result: $Result,
                    summary: $Summary,
                    embedding: $embedding
                })
            """, params)
        print("Imported Games.")

        # 4) Fans - This one was correct, no changes needed
        fans_df = pd.read_csv(os.path.join(CSV_DIR, FANS_FILE))
        for _, row in fans_df.iterrows():
            params = clean_row_dict(row)
            session.run("""
                CREATE (f:Fan {
                    fan_id: $fan_id,
                    first_name: $first_name,
                    last_name: $last_name,
                    email: $email
                })
            """, params)
        print("Imported Fans.")

        # (D) LOAD Relationships
        fan_player_path = os.path.join(REL_CSV_DIR, "fan_player_rels.csv")
        if os.path.exists(fan_player_path):
            rels_df = pd.read_csv(fan_player_path)
            for _, row in rels_df.iterrows():
                params = clean_row_dict(row)
                session.run("""
                    MATCH (f:Fan {fan_id: $start_id})
                    MATCH (p:Player {player_id: $end_id})
                    CREATE (f)-[:FAVORITE_PLAYER]->(p)
                """, params)
            print("Created Fan -> Player relationships.")

        fan_community_path = os.path.join(REL_CSV_DIR, "fan_community_rels.csv")
        if os.path.exists(fan_community_path):
            rels_df = pd.read_csv(fan_community_path)
            for _, row in rels_df.iterrows():
                params = clean_row_dict(row)
                session.run("""
                    MATCH (f:Fan {fan_id: $start_id})
                    MATCH (c:Community {fan_chapter_name: $end_id})
                    CREATE (f)-[:MEMBER_OF]->(c)
                """, params)
            print("Created Fan -> Community relationships.")

    driver.close()
    print("Neo4j ingestion complete!")

# ------------------------------------------------------------------------------
# 3) MAIN
# ------------------------------------------------------------------------------
def main():
    # 1) Generate relationship CSVs for fans' favorite_players & community_memberships
    create_relationship_csvs()

    # 2) Ingest all CSVs (nodes + relationships) into Neo4j
    ingest_to_neo4j()

if __name__ == "__main__":
    main()