File size: 16,245 Bytes
06cb2a3
 
 
c9a37bd
06cb2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a37bd
06cb2a3
 
 
 
 
 
 
 
 
c9a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
06cb2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a37bd
 
 
 
 
 
 
06cb2a3
 
 
c9a37bd
06cb2a3
 
c9a37bd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
06cb2a3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9a37bd
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
import os
import uuid
import asyncio
import json
import gradio as gr
from zep_cloud.client import AsyncZep
from zep_cloud.types import Message

# Import the Gradio-specific implementations directly, not patching
from gradio_graph import graph
from gradio_llm import llm
import gradio_utils
from components.game_recap_component import create_game_recap_component
from components.player_card_component import create_player_card_component
from components.team_story_component import create_team_story_component

# Import the Gradio-compatible agent instead of the original agent
import gradio_agent
from gradio_agent import generate_response, set_memory_session_id

# Import cache getter functions
from tools.game_recap import get_last_game_data
from tools.player_search import get_last_player_data
from tools.team_story import get_last_team_story_data

# --- IMPORTANT: Need access to the lists themselves to clear them --- #
from tools import game_recap, player_search, team_story

# Load persona session IDs
def load_persona_session_ids():
    """Load persona session IDs from JSON file"""
    try:
        with open("z_utils/persona_session_ids.json", "r") as f:
            return json.load(f)
    except Exception as e:
        print(f"[ERROR] Failed to load persona_session_ids.json: {e}")
        # Fallback to hardcoded values if file can't be loaded
        return {
            "Casual Fan": "241b3478c7634492abee9f178b5341cb",
            "Super Fan": "dedcf5cb0d71475f976f4f66d98d6400"
        }

# Define CSS directly
css = """
/* Base styles */
body {
    font-family: 'Arial', sans-serif;
    background-color: #111111;
    color: #E6E6E6;
}

/* Headings */
h1, h2, h3 {
    color: #AA0000;
}

/* Buttons */
button {
    background-color: #AA0000;
    color: #FFFFFF;
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    cursor: pointer;
}

button:hover {
    background-color: #B3995D;
}

/* Game Recap Component */
.game-recap-container {
    background-color: #111111;
    padding: 20px;
    margin: 20px 0;
    border-radius: 10px;
}

.game-recap-row {
    display: flex;
    justify-content: space-between;
    align-items: center;
    margin: 20px 0;
}

.team-info {
    text-align: center;
}

.team-logo {
    width: 100px;
    height: 100px;
    margin-bottom: 10px;
}

.team-name {
    font-size: 1.2em;
    color: #E6E6E6;
}

.team-score {
    font-size: 2em;
    color: #FFFFFF;
    font-weight: bold;
}

.winner {
    color: #B3995D;
}

.video-preview {
    background-color: #222222;
    padding: 15px;
    border-radius: 5px;
    margin-top: 20px;
}

/* Chat Interface */
.chatbot {
    background-color: #111111;
    border: 1px solid #333333; /* Reverted for Bug 2 */
    border-radius: 10px; /* Reverted for Bug 2 */
    padding: 20px;
    margin: 20px 0;
}

.message-input {
    background-color: #222222;
    color: #E6E6E6;
    border: 1px solid #333333;
    border-radius: 5px;
    padding: 10px;
}

.clear-button {
    background-color: #AA0000;
    color: #FFFFFF;
    border: none;
    padding: 10px 20px;
    border-radius: 5px;
    cursor: pointer;
    margin-top: 10px;
}

.clear-button:hover {
    background-color: #B3995D;
}
"""

# Initialize Zep client
zep_api_key = os.environ.get("ZEP_API_KEY")
if not zep_api_key:
    print("ZEP_API_KEY environment variable is not set. Memory features will be disabled.")
    zep = None
else:
    zep = AsyncZep(api_key=zep_api_key)

class AppState:
    def __init__(self):
        self.chat_history = []
        self.initialized = False
        self.user_id = None
        self.session_id = None
        self.zep_client = None

    def add_message(self, role, content):
        self.chat_history.append({"role": role, "content": content})

    def get_chat_history(self):
        return self.chat_history

# Initialize global state
state = AppState()

# Add welcome message to state
welcome_message = """
# 🏈 Welcome to the 49ers FanAI Hub! 
        
I can help you with:
- Information about the 49ers, players, and fans
- Finding 49ers games based on plot descriptions or themes
- Discovering connections between people in the 49ers industry

What would you like to know about today?
"""

# Initialize the chat session
async def initialize_chat():
    """Initialize the chat session with Zep and return a welcome message."""
    try:
        # Generate unique identifiers for the user and session
        state.user_id = gradio_utils.get_user_id()
        state.session_id = gradio_utils.get_session_id()
        
        print(f"Starting new chat session. User ID: {state.user_id}, Session ID: {state.session_id}")
        
        # Register user in Zep if available
        if zep:
            await zep.user.add(
                user_id=state.user_id,
                email="[email protected]",
                first_name="User",
                last_name="MovieFan",
            )
            
            # Start a new session in Zep
            await zep.memory.add_session(
                session_id=state.session_id,
                user_id=state.user_id,
            )
        
        # Add welcome message to state
        state.add_message("assistant", welcome_message)
        state.initialized = True
        
        # Return the welcome message in the format expected by Chatbot
        return [[None, welcome_message]]
        
    except Exception as e:
        import traceback
        print(f"Error in initialize_chat: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")
        error_message = "There was an error starting the chat. Please refresh the page and try again."
        state.add_message("system", error_message)
        return error_message

# Process a message and return a response
async def process_message(message):
    """Process a message and return a response (text only)."""
    # NOTE: This function now primarily focuses on getting the agent's text response.
    # UI component updates are handled in process_and_respond based on cached data.
    try:
        # Store user message in Zep memory if available
        if zep:
            print("Storing user message in Zep...")
            await zep.memory.add(
                session_id=state.session_id,
                messages=[Message(role_type="user", content=message, role="user")]
            )

        # Add user message to state (for context, though Gradio manages history display)
        # state.add_message("user", message)

        # Process with the agent
        print('Calling generate_response function...')
        agent_response = generate_response(message, state.session_id)
        print(f"Agent response received: {agent_response}")

        # Always extract the text output
        output = agent_response.get("output", "I apologize, I encountered an issue.")
        # metadata = agent_response.get("metadata", {})
        print(f"Extracted output: {output}")

        # Add assistant response to state (for context)
        # state.add_message("assistant", output)

        # Store assistant's response in Zep memory if available
        if zep:
            print("Storing assistant response in Zep...")
            await zep.memory.add(
                session_id=state.session_id,
                messages=[Message(role_type="assistant", content=output, role="assistant")]
            )
            print("Assistant response stored in Zep")

        return output # Return only the text output

    except Exception as e:
        import traceback
        print(f"Error in process_message: {str(e)}")
        print(f"Traceback: {traceback.format_exc()}")
        error_message = f"I'm sorry, there was an error processing your request: {str(e)}"
        # state.add_message("assistant", error_message)
        return error_message

# Function to handle user input in Gradio
def user_input(message, history):
    """Handle user input and update the chat history."""
    # Check if this is the first message (initialization)
    if not state.initialized:
        # Initialize the chat session
        asyncio.run(initialize_chat())
        state.initialized = True
    
    # Add the user message to the history
    history.append({"role": "user", "content": message})
    
    # Clear the input field
    return "", history

# Function to generate bot response in Gradio
def bot_response(history):
    """Generate a response from the bot and update the chat history."""
    # Get the last user message
    user_message = history[-1]["content"]
    
    # Process the message and get a response
    response = asyncio.run(process_message(user_message))
    
    # Add the bot response to the history
    history.append({"role": "assistant", "content": response})
    
    return history

# Create the Gradio interface
with gr.Blocks(title="49ers FanAI Hub", css=css) as demo:
    gr.Markdown("# 🏈 49ers FanAI Hub")

    # --- Component Display Area --- #
    # REMOVED Unused/Redundant Component Placeholders:
    # debug_textbox = gr.Textbox(label="Debug Player Data", visible=True, interactive=False)
    # player_card_display = gr.HTML(visible=False)
    # game_recap_display = gr.HTML(visible=False)

    # Chat interface - Components will be added directly here
    chatbot = gr.Chatbot(
        # value=state.get_chat_history(), # Let Gradio manage history display directly
        height=500,
        show_label=False,
        elem_id="chatbot",
        type="tuples", # this triggers a deprecation warning but OK for now
        render_markdown=True
    )

    # Input components
    with gr.Row():
        # Add persona selection radio button (Step 4) - initially doesn't do anything
        persona_radio = gr.Radio(
            choices=["Casual Fan", "Super Fan"],
            value="Casual Fan",  # Default to Casual Fan
            label="Select Persona",
            scale=3
        )
        msg = gr.Textbox(
            placeholder="Ask me about the 49ers...",
            show_label=False,
            scale=6
        )
        submit_btn = gr.Button("Send", scale=1) # Renamed for clarity
    
    # Feedback area for persona changes
    persona_feedback = gr.Textbox(
        label="Persona Status",
        value="Current Persona: Casual Fan",
        interactive=False
    )

    # Handle persona selection changes - Step 4 (skeleton only)
    def on_persona_change(persona_choice):
        """Handle changes to the persona selection radio button"""
        print(f"[UI EVENT] Persona selection changed to: {persona_choice}")
        
        # Load session IDs from file
        persona_ids = load_persona_session_ids()
        
        # Verify the persona exists in our mapping
        if persona_choice not in persona_ids:
            print(f"[ERROR] Unknown persona selected: {persona_choice}")
            return f"Error: Unknown persona '{persona_choice}'"
        
        # Get the session ID for this persona
        session_id = persona_ids[persona_choice]
        print(f"[UI EVENT] Mapping {persona_choice} to session ID: {session_id}")
        
        # Update the agent's session ID
        feedback = set_memory_session_id(session_id, persona_choice)
        
        # Return feedback to display in the UI
        return feedback

    # Set up persona change event listener
    persona_radio.change(on_persona_change, inputs=[persona_radio], outputs=[persona_feedback])

    # Define a combined function for user input and bot response
    async def process_and_respond(message, history):
        """Process user input, get agent response, check for components, and update history."""
        
        # --- Clear caches before processing --- #
        print("Clearing tool data caches...")
        player_search.LAST_PLAYER_DATA = [] 
        game_recap.LAST_GAME_DATA = []
        team_story.LAST_TEAM_STORY_DATA = []
        # --- End cache clearing --- #

        print(f"process_and_respond: Received message: {message}")
        # history.append((message, None)) # Add user message placeholder
        # yield "", history # Show user message immediately

        # Call the agent to get the response (text output + potentially populates cached data)
        agent_response = generate_response(message, state.session_id)
        text_output = agent_response.get("output", "Sorry, something went wrong.")
        metadata = agent_response.get("metadata", {})
        tools_used = metadata.get("tools_used", ["None"])
        
        print(f"process_and_respond: Agent text output: {text_output}")
        print(f"process_and_respond: Tools used: {tools_used}")

        # Initialize response list with the text output
        response_list = [(message, text_output)]

        # Check for specific component data based on tools used or cached data
        # Important: Call the getter functions *after* generate_response has run
        
        # Check for Player Card
        player_data = get_last_player_data()
        if player_data:
            print(f"process_and_respond: Found player data: {player_data}")
            player_card_component = create_player_card_component(player_data)
            if player_card_component:
                response_list.append((None, player_card_component))
                print("process_and_respond: Added player card component.")
            else:
                 print("process_and_respond: Player data found but component creation failed.")

        # Check for Game Recap
        game_data = get_last_game_data()
        if game_data:
            print(f"process_and_respond: Found game data: {game_data}")
            game_recap_comp = create_game_recap_component(game_data)
            if game_recap_comp:
                response_list.append((None, game_recap_comp))
                print("process_and_respond: Added game recap component.")
            else:
                 print("process_and_respond: Game data found but component creation failed.")

        # Check for Team Story --- NEW --- 
        team_story_data = get_last_team_story_data()
        if team_story_data:
             print(f"process_and_respond: Found team story data: {team_story_data}")
             team_story_comp = create_team_story_component(team_story_data)
             if team_story_comp:
                  response_list.append((None, team_story_comp))
                  print("process_and_respond: Added team story component.")
             else:
                  print("process_and_respond: Team story data found but component creation failed.")
                 
        # Update history with all parts of the response (text + components)
        # Gradio's Chatbot handles lists of (user, assistant) tuples, 
        # where assistant can be text or a Gradio component.
        # We replace the last entry (user, None) with the actual response items.
        
        # Gradio manages history display; we just return the latest exchange.
        # The actual history state is managed elsewhere (e.g., Zep, Neo4j history)
        
        # Return the combined response list to update the chatbot UI
        # The first element is user message + assistant text response
        # Subsequent elements are None + UI component
        print(f"process_and_respond: Final response list for UI: {response_list}")
        # Return values suitable for outputs: [msg, chatbot]
        return "", response_list # Return empty string for msg, list for chatbot

    # Set up event handlers with the combined function
    # Ensure outputs list matches the return values of process_and_respond
    # REMOVED redundant components from outputs_list
    outputs_list = [msg, chatbot]
    msg.submit(process_and_respond, [msg, chatbot], outputs_list)
    submit_btn.click(process_and_respond, [msg, chatbot], outputs_list)

    # Add a clear button
    clear_btn = gr.Button("Clear Conversation")

    # Clear function - now only needs to clear msg and chatbot
    def clear_chat():
        # Return empty values for msg and chatbot
        return "", [] 

    # Update clear outputs - only need msg and chatbot
    clear_btn.click(clear_chat, None, [msg, chatbot])

    # Trigger initialization function on app load
    demo.load(initialize_chat, inputs=None, outputs=chatbot)

# Launch the app
if __name__ == "__main__":
    demo.launch()