Spaces:
Runtime error
Runtime error
| import sys | |
| sys.path.append('./') | |
| from diffusers import ( | |
| StableDiffusionPipeline, | |
| UNet2DConditionModel, | |
| DPMSolverMultistepScheduler, | |
| ) | |
| from arc2face import CLIPTextModelWrapper, project_face_embs | |
| import torch | |
| from insightface.app import FaceAnalysis | |
| from PIL import Image | |
| import numpy as np | |
| import random | |
| import gradio as gr | |
| import spaces | |
| # global variable | |
| MAX_SEED = np.iinfo(np.int32).max | |
| if torch.cuda.is_available(): | |
| device = "cuda" | |
| dtype = torch.float16 | |
| else: | |
| device = "cpu" | |
| dtype = torch.float32 | |
| # download models | |
| from huggingface_hub import hf_hub_download | |
| hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/config.json", local_dir="./models") | |
| hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arc2face/diffusion_pytorch_model.safetensors", local_dir="./models") | |
| hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/config.json", local_dir="./models") | |
| hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="encoder/pytorch_model.bin", local_dir="./models") | |
| hf_hub_download(repo_id="FoivosPar/Arc2Face", filename="arcface.onnx", local_dir="./models/antelopev2") | |
| # Load face detection and recognition package | |
| app = FaceAnalysis(name='antelopev2', root='./', providers=['CPUExecutionProvider']) | |
| app.prepare(ctx_id=0, det_size=(640, 640)) | |
| # Load pipeline | |
| base_model = 'runwayml/stable-diffusion-v1-5' | |
| encoder = CLIPTextModelWrapper.from_pretrained( | |
| 'models', subfolder="encoder", torch_dtype=dtype | |
| ) | |
| unet = UNet2DConditionModel.from_pretrained( | |
| 'models', subfolder="arc2face", torch_dtype=dtype | |
| ) | |
| pipeline = StableDiffusionPipeline.from_pretrained( | |
| base_model, | |
| text_encoder=encoder, | |
| unet=unet, | |
| torch_dtype=dtype, | |
| safety_checker=None | |
| ) | |
| pipeline.scheduler = DPMSolverMultistepScheduler.from_config(pipeline.scheduler.config) | |
| pipeline = pipeline.to(device) | |
| def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
| if randomize_seed: | |
| seed = random.randint(0, MAX_SEED) | |
| return seed | |
| def get_example(): | |
| case = [ | |
| [ | |
| './assets/examples/freeman.jpg', | |
| ], | |
| [ | |
| './assets/examples/lily.png', | |
| ], | |
| [ | |
| './assets/examples/joacquin.png', | |
| ], | |
| [ | |
| './assets/examples/jackie.png', | |
| ], | |
| [ | |
| './assets/examples/freddie.png', | |
| ], | |
| [ | |
| './assets/examples/hepburn.png', | |
| ], | |
| ] | |
| return case | |
| def run_example(img_file): | |
| return generate_image(img_file, 25, 3, 23, 2) | |
| def generate_image(image_path, num_steps, guidance_scale, seed, num_images, progress=gr.Progress(track_tqdm=True)): | |
| if image_path is None: | |
| raise gr.Error(f"Cannot find any input face image! Please upload a face image.") | |
| img = np.array(Image.open(image_path))[:,:,::-1] | |
| # Face detection and ID-embedding extraction | |
| faces = app.get(img) | |
| if len(faces) == 0: | |
| raise gr.Error(f"Face detection failed! Please try with another image.") | |
| faces = sorted(faces, key=lambda x:(x['bbox'][2]-x['bbox'][0])*(x['bbox'][3]-x['bbox'][1]))[-1] # select largest face (if more than one detected) | |
| id_emb = torch.tensor(faces['embedding'], dtype=dtype)[None].to(device) | |
| id_emb = id_emb/torch.norm(id_emb, dim=1, keepdim=True) # normalize embedding | |
| id_emb = project_face_embs(pipeline, id_emb) # pass throught the encoder | |
| generator = torch.Generator(device=device).manual_seed(seed) | |
| print("Start inference...") | |
| images = pipeline( | |
| prompt_embeds=id_emb, | |
| num_inference_steps=num_steps, | |
| guidance_scale=guidance_scale, | |
| num_images_per_prompt=num_images, | |
| generator=generator | |
| ).images | |
| return images | |
| ### Description | |
| title = r""" | |
| <h1>Arc2Face: A Foundation Model of Human Faces</h1> | |
| """ | |
| description = r""" | |
| <b>Official 🤗 Gradio demo</b> for <a href='https://arc2face.github.io/' target='_blank'><b>Arc2Face: A Foundation Model of Human Faces</b></a>.<br> | |
| Steps:<br> | |
| 1. Upload an image with a face. If multiple faces are detected, we use the largest one. For images with already tightly cropped faces, detection may fail, try images with a larger margin. | |
| 2. Click <b>Submit</b> to generate new images of the subject. | |
| """ | |
| Footer = r""" | |
| --- | |
| 📝 **Citation** | |
| <br> | |
| If you find Arc2Face helpful for your research, please consider citing our paper: | |
| ```bibtex | |
| @misc{paraperas2024arc2face, | |
| title={Arc2Face: A Foundation Model of Human Faces}, | |
| author={Foivos Paraperas Papantoniou and Alexandros Lattas and Stylianos Moschoglou and Jiankang Deng and Bernhard Kainz and Stefanos Zafeiriou}, | |
| year={2024}, | |
| eprint={2403.11641}, | |
| archivePrefix={arXiv}, | |
| primaryClass={cs.CV} | |
| } | |
| ``` | |
| """ | |
| css = ''' | |
| .gradio-container {width: 85% !important} | |
| ''' | |
| with gr.Blocks(css=css) as demo: | |
| # description | |
| gr.Markdown(title) | |
| gr.Markdown(description) | |
| with gr.Row(): | |
| with gr.Column(): | |
| # upload face image | |
| img_file = gr.Image(label="Upload a photo with a face", type="filepath") | |
| submit = gr.Button("Submit", variant="primary") | |
| with gr.Accordion(open=False, label="Advanced Options"): | |
| num_steps = gr.Slider( | |
| label="Number of sample steps", | |
| minimum=20, | |
| maximum=100, | |
| step=1, | |
| value=25, | |
| ) | |
| guidance_scale = gr.Slider( | |
| label="Guidance scale", | |
| minimum=0.1, | |
| maximum=10.0, | |
| step=0.1, | |
| value=3, | |
| ) | |
| num_images = gr.Slider( | |
| label="Number of output images", | |
| minimum=1, | |
| maximum=4, | |
| step=1, | |
| value=2, | |
| ) | |
| seed = gr.Slider( | |
| label="Seed", | |
| minimum=0, | |
| maximum=MAX_SEED, | |
| step=1, | |
| value=0, | |
| ) | |
| randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
| with gr.Column(): | |
| gallery = gr.Gallery(label="Generated Images") | |
| submit.click( | |
| fn=randomize_seed_fn, | |
| inputs=[seed, randomize_seed], | |
| outputs=seed, | |
| queue=False, | |
| api_name=False, | |
| ).then( | |
| fn=generate_image, | |
| inputs=[img_file, num_steps, guidance_scale, seed, num_images], | |
| outputs=[gallery] | |
| ) | |
| gr.Examples( | |
| examples=get_example(), | |
| inputs=[img_file], | |
| run_on_click=True, | |
| fn=run_example, | |
| outputs=[gallery], | |
| ) | |
| gr.Markdown(Footer) | |
| demo.launch() |