Huong
commited on
Commit
·
265ea18
1
Parent(s):
704a4fe
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,428 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from gradio_rich_textbox import RichTextbox
|
| 3 |
+
import torchaudio
|
| 4 |
+
import re
|
| 5 |
+
import librosa
|
| 6 |
+
import torch
|
| 7 |
+
import numpy as np
|
| 8 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 9 |
+
from whisper.normalizers import EnglishTextNormalizer
|
| 10 |
+
from whisper import audio, DecodingOptions
|
| 11 |
+
from whisper.tokenizer import get_tokenizer
|
| 12 |
+
from whisper.decoding import detect_language
|
| 13 |
+
from olmoasr import load_model
|
| 14 |
+
from bs4 import BeautifulSoup
|
| 15 |
+
|
| 16 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
+
torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 18 |
+
hf_model_path = "checkpoints/medium_hf_demo"
|
| 19 |
+
olmoasr_ckpt = (
|
| 20 |
+
"checkpoints/eval_latesttrain_00524288_medium_fsdp-train_grad-acc_bfloat16_inf.pt"
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
hf_model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 24 |
+
hf_model_path, torch_dtype=torch_dtype, low_cpu_mem_usage=True, use_safetensors=True
|
| 25 |
+
)
|
| 26 |
+
hf_model.to(device).eval()
|
| 27 |
+
processor = AutoProcessor.from_pretrained(hf_model_path)
|
| 28 |
+
|
| 29 |
+
olmoasr_model = load_model(
|
| 30 |
+
name=olmoasr_ckpt, device=device, inference=True, in_memory=True
|
| 31 |
+
)
|
| 32 |
+
olmoasr_model.to(device).eval()
|
| 33 |
+
|
| 34 |
+
normalizer = EnglishTextNormalizer()
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def stereo_to_mono(waveform):
|
| 38 |
+
# Check if the waveform is stereo
|
| 39 |
+
if waveform.shape[0] == 2:
|
| 40 |
+
# Average the two channels to convert to mono
|
| 41 |
+
mono_waveform = np.mean(waveform, axis=0)
|
| 42 |
+
return mono_waveform
|
| 43 |
+
else:
|
| 44 |
+
# If already mono, return as is
|
| 45 |
+
return waveform
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def hf_chunk_transcribe(audio_file, timestamp_text, transcription_text):
|
| 49 |
+
hf_transcriber = pipeline(
|
| 50 |
+
"automatic-speech-recognition",
|
| 51 |
+
model=hf_model,
|
| 52 |
+
tokenizer=processor.tokenizer,
|
| 53 |
+
feature_extractor=processor.feature_extractor,
|
| 54 |
+
torch_dtype=torch_dtype,
|
| 55 |
+
device=device,
|
| 56 |
+
chunk_length_s=30,
|
| 57 |
+
)
|
| 58 |
+
|
| 59 |
+
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
|
| 60 |
+
waveform = stereo_to_mono(waveform)
|
| 61 |
+
print(waveform.shape)
|
| 62 |
+
|
| 63 |
+
if sample_rate != 16000:
|
| 64 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 65 |
+
|
| 66 |
+
result = hf_transcriber(waveform, return_timestamps=True)
|
| 67 |
+
print(f"{result['text']=}\n")
|
| 68 |
+
print(f"{result['chunks']=}\n")
|
| 69 |
+
|
| 70 |
+
# text = result["text"].strip().replace("\n", " ")
|
| 71 |
+
# text = re.sub(r"(foreign|foreign you|you)\s*$", "", text)
|
| 72 |
+
|
| 73 |
+
chunks, text = hf_process_chunks(result["chunks"])
|
| 74 |
+
print(f"{chunks=}\n")
|
| 75 |
+
print(f"{text=}\n")
|
| 76 |
+
|
| 77 |
+
# Edit components
|
| 78 |
+
transSoup = BeautifulSoup(transcription_text, "html.parser")
|
| 79 |
+
transText = transSoup.find(id="transcriptionText")
|
| 80 |
+
if transText:
|
| 81 |
+
transText.clear()
|
| 82 |
+
transText.append(BeautifulSoup(text, "html.parser"))
|
| 83 |
+
|
| 84 |
+
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
|
| 85 |
+
timeText = timeSoup.find(id="timestampText")
|
| 86 |
+
if timeText:
|
| 87 |
+
timeText.clear()
|
| 88 |
+
timeText.append(BeautifulSoup(chunks, "html.parser"))
|
| 89 |
+
|
| 90 |
+
return str(timeSoup), str(transSoup)
|
| 91 |
+
|
| 92 |
+
|
| 93 |
+
def olmoasr_seq_transcribe(audio_file, timestamp_text, transcription_text):
|
| 94 |
+
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
|
| 95 |
+
waveform = stereo_to_mono(waveform)
|
| 96 |
+
print(waveform.shape)
|
| 97 |
+
|
| 98 |
+
if sample_rate != 16000:
|
| 99 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 100 |
+
|
| 101 |
+
options = dict(
|
| 102 |
+
task="transcribe",
|
| 103 |
+
language="en",
|
| 104 |
+
without_timestamps=False,
|
| 105 |
+
beam_size=5,
|
| 106 |
+
best_of=5,
|
| 107 |
+
)
|
| 108 |
+
result = olmoasr_model.transcribe(waveform, verbose=False, **options)
|
| 109 |
+
print(f"{result['text']=}\n")
|
| 110 |
+
print(f"{result['segments']=}\n")
|
| 111 |
+
|
| 112 |
+
# text = result["text"].strip().replace("\n", " ")
|
| 113 |
+
# text = re.sub(r"(foreign|foreign you|Thank you for watching!|. you)\s*$", "", text)
|
| 114 |
+
|
| 115 |
+
chunks, text = olmoasr_process_chunks(result["segments"])
|
| 116 |
+
print(f"{chunks=}\n")
|
| 117 |
+
print(f"{text=}\n")
|
| 118 |
+
|
| 119 |
+
# Edit components
|
| 120 |
+
transSoup = BeautifulSoup(transcription_text, "html.parser")
|
| 121 |
+
transText = transSoup.find(id="transcriptionText")
|
| 122 |
+
if transText:
|
| 123 |
+
transText.clear()
|
| 124 |
+
transText.append(BeautifulSoup(text, "html.parser"))
|
| 125 |
+
|
| 126 |
+
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
|
| 127 |
+
timeText = timeSoup.find(id="timestampText")
|
| 128 |
+
if timeText:
|
| 129 |
+
timeText.clear()
|
| 130 |
+
timeText.append(BeautifulSoup(chunks, "html.parser"))
|
| 131 |
+
|
| 132 |
+
return str(timeSoup), str(transSoup)
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
def hf_seq_transcribe(audio_file, timestamp_text, transcription_text):
|
| 136 |
+
hf_transcriber = pipeline(
|
| 137 |
+
"automatic-speech-recognition",
|
| 138 |
+
model=hf_model,
|
| 139 |
+
tokenizer=processor.tokenizer,
|
| 140 |
+
feature_extractor=processor.feature_extractor,
|
| 141 |
+
torch_dtype=torch_dtype,
|
| 142 |
+
device=device,
|
| 143 |
+
)
|
| 144 |
+
|
| 145 |
+
waveform, sample_rate = librosa.load(audio_file, sr=None, mono=False)
|
| 146 |
+
waveform = stereo_to_mono(waveform)
|
| 147 |
+
print(waveform.shape)
|
| 148 |
+
|
| 149 |
+
if sample_rate != 16000:
|
| 150 |
+
waveform = librosa.resample(waveform, orig_sr=sample_rate, target_sr=16000)
|
| 151 |
+
|
| 152 |
+
result = hf_transcriber(
|
| 153 |
+
waveform,
|
| 154 |
+
return_timestamps=True,
|
| 155 |
+
)
|
| 156 |
+
print(f"{result['text']=}\n")
|
| 157 |
+
print(f"{result['chunks']=}\n")
|
| 158 |
+
|
| 159 |
+
# text = result["text"].strip().replace("\n", " ")
|
| 160 |
+
# text = re.sub(r"(foreign|foreign you|you)\s*$", "", text)
|
| 161 |
+
|
| 162 |
+
chunks, text = hf_seq_process_chunks(result["chunks"])
|
| 163 |
+
print(f"{text=}\n")
|
| 164 |
+
print(f"{chunks=}\n")
|
| 165 |
+
|
| 166 |
+
# Edit components
|
| 167 |
+
transSoup = BeautifulSoup(transcription_text, "html.parser")
|
| 168 |
+
transText = transSoup.find(id="transcriptionText")
|
| 169 |
+
if transText:
|
| 170 |
+
transText.clear()
|
| 171 |
+
transText.append(BeautifulSoup(text, "html.parser"))
|
| 172 |
+
|
| 173 |
+
timeSoup = BeautifulSoup(timestamp_text, "html.parser")
|
| 174 |
+
timeText = timeSoup.find(id="timestampText")
|
| 175 |
+
if timeText:
|
| 176 |
+
timeText.clear()
|
| 177 |
+
timeText.append(BeautifulSoup(chunks, "html.parser"))
|
| 178 |
+
|
| 179 |
+
return str(timeSoup), str(transSoup)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def main_transcribe(inference_strategy, audio_file, timestamp_text, transcription_text):
|
| 183 |
+
if inference_strategy == "HuggingFace Chunking":
|
| 184 |
+
return hf_chunk_transcribe(audio_file, timestamp_text, transcription_text)
|
| 185 |
+
elif inference_strategy == "OLMoASR Sequential":
|
| 186 |
+
return olmoasr_seq_transcribe(audio_file, timestamp_text, transcription_text)
|
| 187 |
+
elif inference_strategy == "HuggingFace Sequential":
|
| 188 |
+
return hf_seq_transcribe(audio_file, timestamp_text, transcription_text)
|
| 189 |
+
|
| 190 |
+
|
| 191 |
+
def olmoasr_process_chunks(chunks):
|
| 192 |
+
processed_chunks = []
|
| 193 |
+
processed_chunks_text = []
|
| 194 |
+
for chunk in chunks:
|
| 195 |
+
text = chunk["text"].strip()
|
| 196 |
+
if not re.match(
|
| 197 |
+
r"\s*(foreign you|foreign|Thank you for watching!|you there|you)\s*$", text
|
| 198 |
+
):
|
| 199 |
+
if text.strip() == "":
|
| 200 |
+
continue
|
| 201 |
+
start = chunk["start"]
|
| 202 |
+
end = chunk["end"]
|
| 203 |
+
pattern = r"\n(?!\d+\.\d+\s*-->)"
|
| 204 |
+
text = re.sub(pattern, "", text)
|
| 205 |
+
processed_chunks_text.append(text.strip())
|
| 206 |
+
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text} <br>")
|
| 207 |
+
else:
|
| 208 |
+
break
|
| 209 |
+
print(f"{processed_chunks=}\n")
|
| 210 |
+
print(f"{processed_chunks_text=}\n")
|
| 211 |
+
print(
|
| 212 |
+
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
|
| 213 |
+
if processed_chunks_text
|
| 214 |
+
else None
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
if processed_chunks_text and re.search(
|
| 218 |
+
r"\s*foreign\s*$", processed_chunks_text[-1]
|
| 219 |
+
):
|
| 220 |
+
processed_chunks_text[-1] = re.sub(
|
| 221 |
+
r"\s*foreign\s*$", "", processed_chunks_text[-1]
|
| 222 |
+
)
|
| 223 |
+
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
|
| 224 |
+
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
|
| 225 |
+
|
| 226 |
+
|
| 227 |
+
def hf_process_chunks(chunks):
|
| 228 |
+
processed_chunks = []
|
| 229 |
+
processed_chunks_text = []
|
| 230 |
+
for chunk in chunks:
|
| 231 |
+
text = chunk["text"].strip()
|
| 232 |
+
if not re.match(r"(foreign you|foreign|you there|you)\s*$", text):
|
| 233 |
+
if text.strip() == "":
|
| 234 |
+
continue
|
| 235 |
+
start = chunk["timestamp"][0]
|
| 236 |
+
end = chunk["timestamp"][1]
|
| 237 |
+
pattern = r"\n(?!\d+\.\d+\s*-->)"
|
| 238 |
+
text = re.sub(pattern, "", text)
|
| 239 |
+
processed_chunks_text.append(text.strip())
|
| 240 |
+
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text.strip()} <br>")
|
| 241 |
+
else:
|
| 242 |
+
break
|
| 243 |
+
print(f"{processed_chunks=}\n")
|
| 244 |
+
print(f"{processed_chunks_text=}\n")
|
| 245 |
+
print(
|
| 246 |
+
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
|
| 247 |
+
if processed_chunks_text
|
| 248 |
+
else None
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
if processed_chunks_text and re.search(
|
| 252 |
+
r"\s*foreign\s*$", processed_chunks_text[-1]
|
| 253 |
+
):
|
| 254 |
+
processed_chunks_text[-1] = re.sub(
|
| 255 |
+
r"\s*foreign\s*$", "", processed_chunks_text[-1]
|
| 256 |
+
)
|
| 257 |
+
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
|
| 258 |
+
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
|
| 259 |
+
|
| 260 |
+
|
| 261 |
+
def hf_seq_process_chunks(chunks):
|
| 262 |
+
processed_chunks = []
|
| 263 |
+
processed_chunks_text = []
|
| 264 |
+
delta_time = 0.0
|
| 265 |
+
global_start = chunks[0]["timestamp"][0]
|
| 266 |
+
prev_end = -1.0
|
| 267 |
+
prev_dur = 0.0
|
| 268 |
+
accumulate_ts = False
|
| 269 |
+
for chunk in chunks:
|
| 270 |
+
text = chunk["text"].strip()
|
| 271 |
+
if not re.match(r"\s*(foreign you|foreign|you there|you)\s*$", text):
|
| 272 |
+
if text.strip() == "":
|
| 273 |
+
continue
|
| 274 |
+
start = chunk["timestamp"][0]
|
| 275 |
+
if start < prev_end:
|
| 276 |
+
accumulate_ts = True
|
| 277 |
+
end = chunk["timestamp"][1]
|
| 278 |
+
if start < prev_end:
|
| 279 |
+
prev_dur += delta_time
|
| 280 |
+
# print(f"{prev_dur=}")
|
| 281 |
+
|
| 282 |
+
delta_time = end - global_start
|
| 283 |
+
# print(f"{delta_time=}")
|
| 284 |
+
|
| 285 |
+
prev_end = end
|
| 286 |
+
# print(f"{prev_end=}")
|
| 287 |
+
if accumulate_ts:
|
| 288 |
+
start += prev_dur
|
| 289 |
+
if accumulate_ts:
|
| 290 |
+
end += prev_dur
|
| 291 |
+
# print(f"{start=}, {end=}, {prev_dur=}")
|
| 292 |
+
|
| 293 |
+
pattern = r"\n(?!\d+\.\d+\s*-->)"
|
| 294 |
+
text = re.sub(pattern, "", text)
|
| 295 |
+
processed_chunks_text.append(text.strip())
|
| 296 |
+
processed_chunks.append(f"{start:.2f} --> {end:.2f}: {text.strip()} <br>")
|
| 297 |
+
else:
|
| 298 |
+
break
|
| 299 |
+
print(f"{processed_chunks=}\n")
|
| 300 |
+
print(f"{processed_chunks_text=}\n")
|
| 301 |
+
print(
|
| 302 |
+
re.search(r"\s*foreign\s*$", processed_chunks_text[-1])
|
| 303 |
+
if processed_chunks_text
|
| 304 |
+
else None
|
| 305 |
+
)
|
| 306 |
+
|
| 307 |
+
if processed_chunks_text and re.search(
|
| 308 |
+
r"\s*foreign\s*$", processed_chunks_text[-1]
|
| 309 |
+
):
|
| 310 |
+
processed_chunks_text[-1] = re.sub(
|
| 311 |
+
r"\s*foreign\s*$", "", processed_chunks_text[-1]
|
| 312 |
+
)
|
| 313 |
+
processed_chunks[-1] = re.sub(r"foreign\s*<br>", "<br>", processed_chunks[-1])
|
| 314 |
+
return "\n".join(processed_chunks), " ".join(processed_chunks_text)
|
| 315 |
+
|
| 316 |
+
|
| 317 |
+
original_timestamp_html = """
|
| 318 |
+
<div style="background: white; border: 1px solid #d1d5db; border-radius: 8px; padding: 16px; width: 100%; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); flex: 1; margin-right: 10px;">
|
| 319 |
+
<div style="color: #374151; font-size: 14px; font-weight: 500; margin-bottom: 8px;">Timestamp Text</div>
|
| 320 |
+
<div id="timestampText"; style="color: #6b7280; font-size: 14px; line-height: 1.5; min-height: 100px; font-family: system-ui, sans-serif;"></div>
|
| 321 |
+
</div>
|
| 322 |
+
"""
|
| 323 |
+
|
| 324 |
+
original_transcription_html = """
|
| 325 |
+
<div style="background: white; border: 1px solid #d1d5db; border-radius: 8px; padding: 16px; width: 100%; box-shadow: 0 1px 3px rgba(0, 0, 0, 0.1); flex: 1; margin-right: 10px;">
|
| 326 |
+
<div style="color: #374151; font-size: 14px; font-weight: 500; margin-bottom: 8px;">Transcription Text</div>
|
| 327 |
+
<div id="transcriptionText"; style="color: #6b7280; font-size: 14px; line-height: 1.5; min-height: 100px; font-family: system-ui, sans-serif;"></div>
|
| 328 |
+
</div>
|
| 329 |
+
"""
|
| 330 |
+
|
| 331 |
+
|
| 332 |
+
def reset():
|
| 333 |
+
return original_timestamp_html, original_transcription_html
|
| 334 |
+
|
| 335 |
+
|
| 336 |
+
event_process_js = """
|
| 337 |
+
<script>
|
| 338 |
+
function getTime() {
|
| 339 |
+
lastIndex = -1;
|
| 340 |
+
setInterval(() => {
|
| 341 |
+
time = document.getElementById('time');
|
| 342 |
+
timestampText = document.getElementById('timestampText');
|
| 343 |
+
if(timestampText && timestampText.innerText != '') {
|
| 344 |
+
if(time == null) {
|
| 345 |
+
timestampText.innerText = '';
|
| 346 |
+
transcriptionText = document.getElementById('transcriptionText');
|
| 347 |
+
if(transcriptionText) {
|
| 348 |
+
transcriptionText.innerText = '';
|
| 349 |
+
}
|
| 350 |
+
lastIndex = -1;
|
| 351 |
+
return;
|
| 352 |
+
}
|
| 353 |
+
timeContent = time.textContent;
|
| 354 |
+
const parts = timeContent.split(":").map(Number);
|
| 355 |
+
currTime = parseFloat(parts[0]) * 60 + parseFloat(parts[1]);
|
| 356 |
+
currText = timestampText.innerText;
|
| 357 |
+
const matches = [...currText.matchAll(/([\d.]+)\s*-->/g)];
|
| 358 |
+
const startTimestamps = matches.map(m => parseFloat(m[1]));
|
| 359 |
+
|
| 360 |
+
if(startTimestamps.length != 0) {
|
| 361 |
+
correctIndex = 0;
|
| 362 |
+
for (let i = 0; i < startTimestamps.length; i++) {
|
| 363 |
+
if (startTimestamps[i] <= currTime) {
|
| 364 |
+
correctIndex = i;
|
| 365 |
+
}
|
| 366 |
+
else {
|
| 367 |
+
break;
|
| 368 |
+
}
|
| 369 |
+
}
|
| 370 |
+
if (lastIndex != correctIndex) {
|
| 371 |
+
lastIndex = correctIndex;
|
| 372 |
+
lines = currText.split('\\n');
|
| 373 |
+
lines[correctIndex] = '<span style="background-color: #ff69b4; padding: 3px 8px; font-weight: 500; border-radius: 4px; color: white; box-shadow: 0 0 10px rgba(255, 105, 180, 0.5);">' + lines[correctIndex] + '</span>';
|
| 374 |
+
try {
|
| 375 |
+
timestampText.innerHTML = lines.join('<br>');
|
| 376 |
+
}
|
| 377 |
+
catch (e) {
|
| 378 |
+
console.log('Not Updating!');
|
| 379 |
+
}
|
| 380 |
+
}
|
| 381 |
+
|
| 382 |
+
}
|
| 383 |
+
}
|
| 384 |
+
else {
|
| 385 |
+
lastIndex = -1;
|
| 386 |
+
}
|
| 387 |
+
}, 50);
|
| 388 |
+
}
|
| 389 |
+
setTimeout(getTime, 1000);
|
| 390 |
+
</script>
|
| 391 |
+
"""
|
| 392 |
+
demo = gr.Blocks(
|
| 393 |
+
head=event_process_js,
|
| 394 |
+
theme=gr.themes.Default(primary_hue="emerald", secondary_hue="green"),
|
| 395 |
+
)
|
| 396 |
+
with demo:
|
| 397 |
+
audio = gr.Audio(sources=["upload", "microphone"], type="filepath")
|
| 398 |
+
inf_strategy = gr.Dropdown(
|
| 399 |
+
label="Inference Strategy",
|
| 400 |
+
choices=[
|
| 401 |
+
"HuggingFace Chunking",
|
| 402 |
+
"HuggingFace Sequential",
|
| 403 |
+
"OLMoASR Sequential",
|
| 404 |
+
],
|
| 405 |
+
value="HuggingFace Chunking",
|
| 406 |
+
multiselect=False,
|
| 407 |
+
info="Select the inference strategy for transcription.",
|
| 408 |
+
elem_id="inf_strategy",
|
| 409 |
+
)
|
| 410 |
+
main_transcribe_button = gr.Button(
|
| 411 |
+
"Transcribe",
|
| 412 |
+
variant="primary",
|
| 413 |
+
)
|
| 414 |
+
with gr.Row():
|
| 415 |
+
timestampText = gr.HTML(original_timestamp_html)
|
| 416 |
+
|
| 417 |
+
transcriptionText = gr.HTML(original_transcription_html)
|
| 418 |
+
inf_strategy.change(
|
| 419 |
+
fn=reset,
|
| 420 |
+
inputs=[],
|
| 421 |
+
outputs=[timestampText, transcriptionText],
|
| 422 |
+
)
|
| 423 |
+
main_transcribe_button.click(
|
| 424 |
+
fn=main_transcribe,
|
| 425 |
+
inputs=[inf_strategy, audio, timestampText, transcriptionText],
|
| 426 |
+
outputs=[timestampText, transcriptionText],
|
| 427 |
+
)
|
| 428 |
+
demo.launch(share=True)
|