Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,738 Bytes
a109861 c782801 c23b6bb 5a07d09 68aee5f 1265529 bc2dc1a 6148b9b 1265529 a7e2698 02a0351 bc2dc1a 8d27209 bc2dc1a 1265529 bc2dc1a dfa7b0a 1265529 dfa7b0a 1265529 bc2dc1a df2d919 dfa7b0a 4fea159 1265529 bc2dc1a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 |
import os
os.system("pip install git+https://github.com/facebookresearch/detectron2.git")
os.system("git clone https://github.com/Visual-AI/Mr.DETR.git MrDETR && cd MrDETR && rm -f requirements.txt && cd ..")
os.system("cp multi_scale_deform_attn.py MrDETR/detrex/layers/ && cd MrDETR && pip install . & cd ..")
import sys
sys.path.append("MrDETR/")
import gradio as gr
from demo.predictors import VisualizationDemo
from detectron2.checkpoint import DetectionCheckpointer
from detectron2.config import LazyConfig, instantiate
import numpy as np
from PIL import Image
if __name__ == "__main__":
gr.close_all()
cfg = LazyConfig.load("MrDETR/projects/mr_detr_align/configs/deformable_detr_swinl_two_stage_12ep_plusplus.py")
cfg["model"].device = "cuda"
cfg["train"].device = "cuda"
model = instantiate(cfg.model)
checkpointer = DetectionCheckpointer(model)
checkpointer.load("https://github.com/Visual-AI/Mr.DETR/releases/download/weights/MrDETR_align_swinL_12ep_900q_safe.pth")
model.eval()
vis_demo = VisualizationDemo(
model=model,
min_size_test=800,
max_size_test=1333,
img_format="RGB",
metadata_dataset="coco_2017_val",
)
def inference(img, confidence):
img = np.array(img)
_, results = vis_demo.run_on_image(img, confidence)
results = Image.fromarray(results.get_image()[:, :, ::-1])
return results
demo = gr.Interface(
fn=inference,
inputs=[
gr.Image(type="pil", image_mode="RGB"),
# gr.Number(precision=2, minimum=0.0, maximum=1.0, value=0.5)
gr.Slider(minimum=0.0, maximum=1.0, value=0.5, step=0.05)
],
outputs="image",
examples=[
["MrDETR/assets/000000014226.jpg", 0.5],
["MrDETR/assets/000000028449.jpg", 0.3],
["MrDETR/assets/000000070048.jpg", 0.5],
["MrDETR/assets/000000218997.jpg", 0.5],
["MrDETR/assets/000000279774.jpg", 0.5],
["MrDETR/assets/000000434459.jpg", 0.5],
["MrDETR/assets/000000448448.jpg", 0.5],
["MrDETR/assets/000000560474.jpg", 0.5],
],
title="[CVPR 2025] Mr. DETR: Instructive Multi-Route Training for Detection Transformers",
description='''
[](https://arxiv.org/abs/2412.10028)
[](https://paperswithcode.com/sota/object-detection-on-coco-2017-val?p=mr-detr-instructive-multi-route-training-for)
'''
)
demo.launch() |