Spaces:
Runtime error
Runtime error
File size: 14,813 Bytes
a8aa40c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
import GPyOpt
# Unique phase elements
# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write
# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"
scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
'PROPERTY: HV': (107.0, 1183.0),
'PROPERTY: YS (MPa)': (62.0, 3416.0)}
input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}
unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']
input_cols = {
"PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
"Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
"PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
"Choose between Single (S), Multiphase (M) and other (OTHER)",
"PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
"Choose between BCC, FCC and other ",
"PROPERTY: Processing method": "(PROPERTY: Processing method) "
"Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
"PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
"Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}
def process_microstructure(list_phases):
permutations = list(itertools.permutations(list_phases))
permutations_strings = [str('+'.join(list(e))) for e in permutations]
for e in permutations_strings:
if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
return e
return 'OTHER'
def write_logs(message, message_type="Prediction"):
"""
Write logs
"""
#with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
# with open(dataset_path, "a") as csvfile:
# writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
# writer.writerow(
# {"name": message_type, "message": message, "time": str(datetime.now())}
# )
return
def predict(x, request: gr.Request):
"""
Predict the hardness and yield strength using the ML model. Input data is a dataframe
"""
loaded_model = tf.keras.models.load_model("hardness_nn_graph_separate_elements.h5")
print("summary is", loaded_model.summary())
#x = x.replace("", 0)
x = np.asarray(x).astype("float32")
y = loaded_model.predict(x)
y_hardness = y[0][0]
y_ys = y[0][1]
minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
print("Prediction is ", y)
if request is not None: # Verify if request is not None (when building the app the first request is None)
message = f"{request.username}_{request.client.host}"
print("MESSAGE")
print(message)
res = write_logs(message)
#interpret_fig = utils.interpret(x)
return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)
def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
predictions = predict(x, request)
error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target)))
error_ys = np.sqrt(np.square(predictions[2]-float(ys_target)))
print("Optimization step is ", predictions, float(hardness_target), float(ys_target),
error_hardness, error_ys)
return error_hardness + error_ys
def predict_inverse(hardness_original_target, ys_original_target, metals_to_use, request: gr.Request):
one_hot_columns = utils.return_feature_names()
min_df_hardness, max_df_hardness = scaling_factors["PROPERTY: HV"]
hardness_original_target = float(hardness_original_target)
min_df_ys, max_df_ys = scaling_factors["PROPERTY: YS (MPa)"]
ys_original_target = float(ys_original_target)
hardness_target = (hardness_original_target-min_df_hardness)/(max_df_hardness-min_df_hardness)
ys_target = (ys_original_target-min_df_ys)/(max_df_ys-min_df_ys)
continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
'PROPERTY: Calculated Young modulus (GPa)',
'PROPERTY: Metal Al', 'PROPERTY: Metal Co',
'PROPERTY: Metal Fe', 'PROPERTY: Metal Ni', 'PROPERTY: Metal Si',
'PROPERTY: Metal Cr', 'PROPERTY: Metal Nb', 'PROPERTY: Metal Ti',
'PROPERTY: Metal Mn', 'PROPERTY: Metal V', 'PROPERTY: Metal Mo',
'PROPERTY: Metal Cu', 'PROPERTY: Metal Ta', 'PROPERTY: Metal Zr',
'PROPERTY: Metal Hf', 'PROPERTY: Metal W', 'PROPERTY: Metal Zn',
'PROPERTY: Metal Sn', 'PROPERTY: Metal Re', 'PROPERTY: Metal C',
'PROPERTY: Metal Pd', 'PROPERTY: Metal Sc', 'PROPERTY: Metal Y']
categorical_variables = list(one_hot_columns)
for c in continuous_variables:
categorical_variables.remove(c)
# Metals constraints
metals_elements = [c for c in continuous_variables if c.startswith("PROPERTY: Metal")]
# metals_to_use = ['Al', 'Co', 'Fe', 'Cr']
metals_to_use = ["PROPERTY: Metal " + metals_to_use[i] for i in range(len(metals_to_use))]
# Domain
domain = []
for c in one_hot_columns:
if c in continuous_variables:
if c.startswith("PROPERTY: Metal") and c not in metals_to_use:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 0.)})
else:
domain.append({'name': str(c), 'type': 'continuous', 'domain': (0., 1.)})#(0.,1.)})
else:
domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})
# Constraints
constraints = []
constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other'] #'PROPERTY: Metal']#, 'Microstructure']
for constraint in constrained_columns:
sum_string = ''
for i in range (len(one_hot_columns)):
column_one_hot = one_hot_columns[i]
if column_one_hot.startswith(constraint):
sum_string = sum_string+"+x[:," + str(i) + "]"
constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})
def fit_outputs(x):
return fit_outputs_constraints(x, hardness_target, ys_target, request)
opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize
domain = domain, # box-constraints of the problem
constraints = constraints,
acquisition_type ='LCB', # LCB acquisition
acquisition_weight = 0.1) # Exploration exploitation
# it may take a few seconds
opt.run_optimization(max_iter=5)
# opt.plot_convergence()
x_best = opt.X[np.argmin(opt.Y)]
best_params = dict(zip(
[el['name'] for el in domain],
[[x] for x in x_best]))
optimized_x = pd.DataFrame.from_dict(best_params)
for c in optimized_x.columns:
if c in continuous_variables:
if c in ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)']:
optimized_x[c]=round(optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0], 2)
result = optimized_x
result = result[result>0.0].dropna(axis=1)
# Normalize metals outputs
sum_metals = np.sum(result[c] for c in list(result.columns) if c.startswith("PROPERTY: Metal"))
for column in result.columns:
if column.startswith("PROPERTY: Metal"):
result[column]/= sum_metals
result[column] = round(result[column], 2)
columns = list(result.columns)
return (result[columns[2:-3]], columns[-3], result.at[0, columns[0]],
result.at[0, columns[1]], columns[-2], columns[-1])
example_inputs = [820, 1800, ['Al', 'Fe']]
css_styling = """#submit {background: #1eccd8}
#submit:hover {background: #a2f1f6}
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""
light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
c200="#a1c6db", # Component borders
c300="#FFFFFF", #
c400="#e4f3fa", # Footer text
c500="#0c1538", # Text of component headers in light mode only
c600="#a1c6db", # Top corner of button in dark mode
c700="#475383", # Button text in light mode + component borders in dark mode
c800="#0c1538", # Markdown text in light mode
c900="#a1c6db", # Background of dataframe - dark mode
c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""
with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
#gr.HTML(html)
gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>")
gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength")
with gr.Row():
clear_button = gr.Button("Clear")
prediction_button = gr.Button("Predict", elem_id="submit")
with gr.Row():
with gr.Column():
gr.Markdown("### The target performance of your alloy")
input_hardness = gr.Text(label="Enter your target hardness (in HV)")
input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
gr.Markdown('### Your metallic elements constraints')
metals_constraints = gr.CheckboxGroup(
choices=['Al', 'Co', 'Fe', 'Ni', 'Si', 'Cr', 'Nb', 'Ti',
'Mn', 'V', 'Mo', 'Cu', 'Ta', 'Zr',
'Hf', 'W', 'Zn', 'Sn', 'Re', 'C',
'Pd', 'Sc', 'Y'], label="Your metals constraints",
)
with gr.Column():
with gr.Row():
with gr.Column():
gr.Markdown("### Your optimal alloy formula and processing conditions")
optimal_formula = gr.DataFrame(label="Your optimal alloy formula", wrap=True)
optimal_processing_method = gr.Text(label="Processing method")
gr.Markdown("### Additional information about your optimal alloy")
density = gr.Text(label="Density (g/cm3)")
young_modulus = gr.Text(label = "Young modulus (GPa)")
microstructure = gr.Text(label="Microstructure (BCC/FCC/Other)")
phase = gr.Text(label="Number of phases (S/M)")
with gr.Row():
gr.Examples([example_inputs], [input_hardness, input_yield_strength, metals_constraints])
prediction_button.click(
fn=predict_inverse,
inputs=[input_hardness, input_yield_strength, metals_constraints],
outputs=[optimal_formula, optimal_processing_method, density, young_modulus, microstructure, phase],
show_progress=True,
)
clear_button.click(
lambda x: [gr.update(value=None)] * 9,
[],
[
input_hardness,
input_yield_strength,
metals_constraints,
optimal_formula,
optimal_processing_method,
density, young_modulus,
microstructure, phase
],
)
if __name__ == "__main__":
demo.queue(concurrency_count=2)
demo.launch() |