File size: 15,318 Bytes
a8aa40c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
import os
import csv
import gradio as gr
import tensorflow as tf
import numpy as np
import pandas as pd
from datetime import datetime
import utils
from huggingface_hub import Repository
import itertools
import GPyOpt

# Unique phase elements

# Load access tokens
WRITE_TOKEN = os.environ.get("WRITE_PER") # write

# Logs repo path
dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness"
dataset_path = "logs_alloy_hardness.csv"

scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7),
                   'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0),
                   'PROPERTY: HV': (107.0, 1183.0),
                   'PROPERTY: YS (MPa)': (62.0, 3416.0)}

input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2},
                 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2},
                 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5,
                                              'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10,
                                              'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14,
                                              'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18,
                                              'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22,
                                              'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27,
                                              'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31,
                                              'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36,
                                              'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40,
                                              'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44},
                 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}}

unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER']

input_cols = {
    "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) "
                               "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)",
    "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) "
                                   "Choose between Single (S), Multiphase (M) and other (OTHER)",
    "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) "
                               "Choose between BCC, FCC and other ",
    "PROPERTY: Processing method": "(PROPERTY: Processing method) "
                                   "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)",
    "PROPERTY: Microstructure": "(PROPERTY: Microstructure) "
                                "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))",
}

def process_microstructure(list_phases):
    permutations = list(itertools.permutations(list_phases))
    permutations_strings = [str('+'.join(list(e))) for e in permutations]
    for e in permutations_strings:
        if e in list(input_mapping['PROPERTY: Microstructure'].keys()):
            return e
    return 'OTHER'
    
def write_logs(message, message_type="Prediction"):
    """
    Write logs
    """
    #with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False):
     #   with open(dataset_path, "a") as csvfile:
      #          writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"])
       #         writer.writerow(
        #            {"name": message_type, "message": message, "time": str(datetime.now())}
         #       )
    return 
    
def predict(x, request: gr.Request):
    """
    Predict the hardness and yield strength using the ML model. Input data is a dataframe
    """
    loaded_model = tf.keras.models.load_model("hardness.h5")
    print("summary is", loaded_model.summary())
    #x = x.replace("", 0)
    x = np.asarray(x).astype("float32")
    y = loaded_model.predict(x)
    y_hardness = y[0][0]
    y_ys = y[0][1]
    minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV']
    minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)']
    print("Prediction is ", y)
    if request is not None:   # Verify if request is not None (when building the app the first request is None)
        message = f"{request.username}_{request.client.host}"
        print("MESSAGE")
        print(message)
        res = write_logs(message)
    #interpret_fig = utils.interpret(x)
    return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12,
            round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12)


def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request):
    """
    Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list
    """
    input_tuple = (in1, in2, in3, in4, in5)
    formula = utils.normalize_and_alphabetize_formula(in1)
    density = utils.calculate_density(formula)
    young_modulus = utils.calculate_youngs_modulus(formula)
    input_dict = {}

    in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)]
    input_dict['PROPERTY: Single/Multiphase'] = [int(in2)]
    
    in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)]
    input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)]
    
    in4 = input_mapping['PROPERTY: Processing method'][str(in4)]
    input_dict['PROPERTY: Processing method'] = [int(in4)]

    in5 = process_microstructure(in5)
    in5 = input_mapping['PROPERTY: Microstructure'][in5]
    input_dict['PROPERTY: Microstructure'] = [int(in5)]
    
    density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)']
    density = (density-density_scaling_factors[0])/(
        density_scaling_factors[1]-density_scaling_factors[0])
    input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)]

    
    ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)']
    young_modulus = (young_modulus-ym_scaling_factors[0])/(
        ym_scaling_factors[1]-ym_scaling_factors[0])
    input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)]

    input_df = pd.DataFrame.from_dict(input_dict)
    one_hot = utils.turn_into_one_hot(input_df, input_mapping)
    print("One hot columns are ", one_hot.columns)
    return predict(one_hot, request)

def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request):
    predictions = predict(x, request)
    error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target)))
    error_ys = np.sqrt(np.square(predictions[2]-float(ys_target)))
    print("Optimization step is ", predictions, float(hardness_target), float(ys_target),
          error_hardness, error_ys)
    return error_hardness + error_ys

def predict_inverse(hardness_target, ys_target, formula, request: gr.Request):

    one_hot_columns = utils.return_feature_names()

    continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)',
                         'PROPERTY: Calculated Young modulus (GPa)']
    categorical_variables = list(one_hot_columns)
    for c in continuous_variables:
        categorical_variables.remove(c)


    fixed_density = utils.calculate_density(str(formula))
    fixed_ym = utils.calculate_youngs_modulus(str(formula))
    
    domain = []
    for c in one_hot_columns:
        if c in continuous_variables:
            if c == continuous_variables[0]:
                domain_density = (fixed_density-scaling_factors[c][0])/(
                    scaling_factors[c][1]-scaling_factors[c][0])
                domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_density, domain_density)})#(0.,1.)})
            else:
                domain_ym = (fixed_ym-scaling_factors[c][0])/(
                    scaling_factors[c][1]-scaling_factors[c][0])
                domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_ym, domain_ym)})#(0.,1.)})
        else:
            domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)})

    print("Domain is ", domain)
    constraints = []
    constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure']

    for constraint in constrained_columns:
        sum_string = ''
        for i in range (len(one_hot_columns)):
            column_one_hot = one_hot_columns[i]
            if column_one_hot.startswith(constraint):
                sum_string = sum_string+"+x[:," + str(i) + "]"
        constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'})
        constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'})

    def fit_outputs(x):
        return fit_outputs_constraints(x, hardness_target, ys_target, request)

    opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs,            # function to optimize       
                                              domain = domain,        # box-constraints of the problem
                                              constraints = constraints,
                                              acquisition_type ='LCB',       # LCB acquisition
                                              acquisition_weight = 0.1)   # Exploration exploitation
    # it may take a few seconds
    opt.run_optimization(max_iter=20)
    opt.plot_convergence()
    x_best = opt.X[np.argmin(opt.Y)]
    best_params = dict(zip(
        [el['name'] for el in domain],
        [[x] for x in x_best]))
    optimized_x = pd.DataFrame.from_dict(best_params)
    #for c in optimized_x.columns:
     #   if c in continuous_variables:
      #      optimized_x[c]=optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0]
    optimized_x = optimized_x[['PROPERTY: Calculated Density (g/cm$^3$)',
                               'PROPERTY: Calculated Young modulus (GPa)',
                               'Preprocessing method ANNEAL',
                               'Preprocessing method CAST', 'Preprocessing method OTHER',
                               'Preprocessing method POWDER', 'Preprocessing method WROUGHT',
                               'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER',
                               'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']]
    result = optimized_x
    result = result[result>0.0].dropna(axis=1)
    return list(result.keys())[2:]


example_inputs = ["Al0.25 Co1 Fe1 Ni1", 820, 1800]

css_styling = """#submit {background: #1eccd8} 
#submit:hover {background: #a2f1f6} 
.output-image, .input-image, .image-preview {height: 250px !important}
.output-plot {height: 250px !important}"""

light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only
                                c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode
                                c200="#a1c6db", # Component borders
                                c300="#FFFFFF", # 
                                c400="#e4f3fa", # Footer text
                                c500="#0c1538", # Text of component headers in light mode only
                                c600="#a1c6db", # Top corner of button in dark mode
                                c700="#475383", # Button text in light mode + component borders in dark mode
                                c800="#0c1538", # Markdown text in light mode
                                c900="#a1c6db", # Background of dataframe - dark mode
                                c950="#0c1538") # Background in dark mode only
# secondary color used for highlight box content when typing in light mode, and download option in dark mode
# primary color used for login button in dark mode
osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors)
page_title = "Alloys' hardness and yield strength prediction"
favicon_path = "osiumai_favicon.ico"
logo_path  = "osiumai_logo.jpg"
html = f"""<html> <link rel="icon" type="image/x-icon" href="file={favicon_path}">
<img src='file={logo_path}' alt='Osium AI logo' width='200' height='100'> </html>"""


with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo:
    #gr.HTML(html)
    gr.Markdown("# <p style='text-align: center;'>Get optimal alloy recommendations based on your target performance</p>")
    gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength")
    with gr.Row():
        clear_button = gr.Button("Clear")
        prediction_button = gr.Button("Predict", elem_id="submit")
    with gr.Row():
        with gr.Column():
            gr.Markdown("### Your alloy formula")
            formula = gr.Text(label = "Alloy formula")
            gr.Markdown("### The target performance of your alloy")
            input_hardness = gr.Text(label="Enter your target hardness (in HV)")
            input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)")
        with gr.Column():
            with gr.Row():
                with gr.Column():
                    gr.Markdown("### Your optimal microstructure and processing conditions")
                #optimal_parameters = gr.DataFrame(label="Optimal parameters", wrap=True)
                with gr.Column():
                    param1 = gr.Text(label="Processing method")
                with gr.Column():
                    param2 = gr.Text(label="Microstructure")
                with gr.Column():
                    param3 = gr.Text(label="Phase")
            #with gr.Row():
                #with gr.Column():
                    #with gr.Row():
                     #   gr.Markdown("### Interpretation of hardness prediction")
                      #  gr.Markdown("### Interpretation of yield strength prediction")
                    #with gr.Row():
                     #   output_interpretation = gr.Plot(label="Interpretation")

    with gr.Row():
        gr.Examples([example_inputs], [formula, input_hardness, input_yield_strength])
            
            

    prediction_button.click(
        fn=predict_inverse,
        inputs=[input_hardness, input_yield_strength, formula],
        outputs=[
            param1,
            param2,
            param3,
        ],
        show_progress=True,
    )
    clear_button.click(
        lambda x: [gr.update(value=None)] * 6,
        [],
        [
            param1,
            param2,
            param3,
            input_hardness,
            input_yield_strength,
            formula
        ],
    )


if __name__ == "__main__":
    demo.queue(concurrency_count=2)
    demo.launch()