import os import csv import gradio as gr import tensorflow as tf import numpy as np import pandas as pd from datetime import datetime import utils from huggingface_hub import Repository import itertools import GPyOpt # Unique phase elements # Load access tokens WRITE_TOKEN = os.environ.get("WRITE_PER") # write # Logs repo path dataset_url = "https://huggingface.co/datasets/sandl/upload_alloy_hardness" dataset_path = "logs_alloy_hardness.csv" scaling_factors = {'PROPERTY: Calculated Density (g/cm$^3$)': (5.5, 13.7), 'PROPERTY: Calculated Young modulus (GPa)': (77.0, 336.0), 'PROPERTY: HV': (107.0, 1183.0), 'PROPERTY: YS (MPa)': (62.0, 3416.0)} input_mapping = {'PROPERTY: BCC/FCC/other': {'BCC': 0, 'FCC': 1, 'OTHER': 2},#, 'nan': 2}, 'PROPERTY: Processing method': {'ANNEAL': 0, 'CAST': 1, 'OTHER': 2, 'POWDER': 3, 'WROUGHT': 4},#, 'nan': 2}, 'PROPERTY: Microstructure': {'B2': 0, 'B2+BCC': 1, 'B2+L12': 2, 'B2+Laves+Sec.': 3, 'B2+Sec.': 4, 'BCC': 5, 'BCC+B2': 6, 'BCC+B2+FCC': 7, 'BCC+B2+FCC+Sec.': 8, 'BCC+B2+L12': 9, 'BCC+B2+Laves': 10, 'BCC+B2+Sec.': 11, 'BCC+BCC': 12, 'BCC+BCC+HCP': 13, 'BCC+BCC+Laves': 14, 'BCC+BCC+Laves(C14)': 15, 'BCC+BCC+Laves(C15)': 16, 'BCC+FCC': 17, 'BCC+HCP': 18, 'BCC+Laves': 19, 'BCC+Laves(C14)': 20, 'BCC+Laves(C15)': 21, 'BCC+Laves+Sec.': 22, 'BCC+Sec.': 23, 'FCC': 24, 'FCC+B2': 25, 'FCC+B2+Sec.': 26, 'FCC+BCC': 27, 'FCC+BCC+B2': 28, 'FCC+BCC+B2+Sec.': 29, 'FCC+BCC+BCC': 30, 'FCC+BCC+Sec.': 31, 'FCC+FCC': 32, 'FCC+HCP': 33, 'FCC+HCP+Sec.': 34, 'FCC+L12': 35, 'FCC+L12+B2': 36, 'FCC+L12+Sec.': 37, 'FCC+Laves': 38, 'FCC+Laves(C14)': 39, 'FCC+Laves+Sec.': 40, 'FCC+Sec.': 41, 'L12+B2': 42, 'Laves(C14)+Sec.': 43, 'OTHER': 44},#, 'nan': 44}, 'PROPERTY: Single/Multiphase': {'': 0, 'M': 1, 'S': 2, 'OTHER': 3}}#, 'nan': 3}} unique_phase_elements = ['B2', 'BCC', 'FCC', 'HCP', 'L12', 'Laves', 'Laves(C14)', 'Laves(C15)', 'Sec.', 'OTHER'] input_cols = { "PROPERTY: Alloy formula": "(PROPERTY: Alloy formula) " "Enter alloy formula using proportions representation (i.e. Al0.25 Co1 Fe1 Ni1)", "PROPERTY: Single/Multiphase": "(PROPERTY: Single/Multiphase) " "Choose between Single (S), Multiphase (M) and other (OTHER)", "PROPERTY: BCC/FCC/other": "(PROPERTY: BCC/FCC/other) " "Choose between BCC, FCC and other ", "PROPERTY: Processing method": "(PROPERTY: Processing method) " "Choose your processing method (ANNEAL, CAST, POWDER, WROUGHT or OTHER)", "PROPERTY: Microstructure": "(PROPERTY: Microstructure) " "Choose the microstructure (SEC means the secondary/tertiary microstructure is not one of FCC, BCC, HCP, L12, B2, Laves, Laves (C14), Laves (C15))", } def process_microstructure(list_phases): permutations = list(itertools.permutations(list_phases)) permutations_strings = [str('+'.join(list(e))) for e in permutations] for e in permutations_strings: if e in list(input_mapping['PROPERTY: Microstructure'].keys()): return e return 'OTHER' def write_logs(message, message_type="Prediction"): """ Write logs """ #with Repository(local_dir="data", clone_from=dataset_url, use_auth_token=WRITE_TOKEN).commit(commit_message="from private", blocking=False): # with open(dataset_path, "a") as csvfile: # writer = csv.DictWriter(csvfile, fieldnames=["name", "message", "time"]) # writer.writerow( # {"name": message_type, "message": message, "time": str(datetime.now())} # ) return def predict(x, request: gr.Request): """ Predict the hardness and yield strength using the ML model. Input data is a dataframe """ loaded_model = tf.keras.models.load_model("hardness.h5") print("summary is", loaded_model.summary()) #x = x.replace("", 0) x = np.asarray(x).astype("float32") y = loaded_model.predict(x) y_hardness = y[0][0] y_ys = y[0][1] minimum_hardness, maximum_hardness = scaling_factors['PROPERTY: HV'] minimum_ys, maximum_ys = scaling_factors['PROPERTY: YS (MPa)'] print("Prediction is ", y) if request is not None: # Verify if request is not None (when building the app the first request is None) message = f"{request.username}_{request.client.host}" print("MESSAGE") print(message) res = write_logs(message) #interpret_fig = utils.interpret(x) return (round(y_hardness*(maximum_hardness-minimum_hardness)+minimum_hardness, 2), 12, round(y_ys*(maximum_ys-minimum_ys)+minimum_ys, 2), 12) def predict_from_tuple(in1, in2, in3, in4, in5, request: gr.Request): """ Predict the hardness using the ML model. Input data is a tuple. Input order should be the same as the cols list """ input_tuple = (in1, in2, in3, in4, in5) formula = utils.normalize_and_alphabetize_formula(in1) density = utils.calculate_density(formula) young_modulus = utils.calculate_youngs_modulus(formula) input_dict = {} in2 = input_mapping['PROPERTY: Single/Multiphase'][str(in2)] input_dict['PROPERTY: Single/Multiphase'] = [int(in2)] in3 = input_mapping['PROPERTY: BCC/FCC/other'][str(in3)] input_dict['PROPERTY: BCC/FCC/other'] = [int(in3)] in4 = input_mapping['PROPERTY: Processing method'][str(in4)] input_dict['PROPERTY: Processing method'] = [int(in4)] in5 = process_microstructure(in5) in5 = input_mapping['PROPERTY: Microstructure'][in5] input_dict['PROPERTY: Microstructure'] = [int(in5)] density_scaling_factors = scaling_factors['PROPERTY: Calculated Density (g/cm$^3$)'] density = (density-density_scaling_factors[0])/( density_scaling_factors[1]-density_scaling_factors[0]) input_dict['PROPERTY: Calculated Density (g/cm$^3$)'] = [float(density)] ym_scaling_factors = scaling_factors['PROPERTY: Calculated Young modulus (GPa)'] young_modulus = (young_modulus-ym_scaling_factors[0])/( ym_scaling_factors[1]-ym_scaling_factors[0]) input_dict['PROPERTY: Calculated Young modulus (GPa)'] = [float(young_modulus)] input_df = pd.DataFrame.from_dict(input_dict) one_hot = utils.turn_into_one_hot(input_df, input_mapping) print("One hot columns are ", one_hot.columns) return predict(one_hot, request) def fit_outputs_constraints(x, hardness_target, ys_target, request: gr.Request): predictions = predict(x, request) error_hardness = np.sqrt(np.square(predictions[0]-float(hardness_target))) error_ys = np.sqrt(np.square(predictions[2]-float(ys_target))) print("Optimization step is ", predictions, float(hardness_target), float(ys_target), error_hardness, error_ys) return error_hardness + error_ys def predict_inverse(hardness_target, ys_target, formula, request: gr.Request): one_hot_columns = utils.return_feature_names() continuous_variables = ['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)'] categorical_variables = list(one_hot_columns) for c in continuous_variables: categorical_variables.remove(c) fixed_density = utils.calculate_density(str(formula)) fixed_ym = utils.calculate_youngs_modulus(str(formula)) domain = [] for c in one_hot_columns: if c in continuous_variables: if c == continuous_variables[0]: domain_density = (fixed_density-scaling_factors[c][0])/( scaling_factors[c][1]-scaling_factors[c][0]) domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_density, domain_density)})#(0.,1.)}) else: domain_ym = (fixed_ym-scaling_factors[c][0])/( scaling_factors[c][1]-scaling_factors[c][0]) domain.append({'name': str(c), 'type': 'continuous', 'domain': (domain_ym, domain_ym)})#(0.,1.)}) else: domain.append({'name': str(c), 'type': 'discrete', 'domain': (0,1)}) print("Domain is ", domain) constraints = [] constrained_columns = ['Single/Multiphase', 'Preprocessing method', 'BCC/FCC/other']#, 'Microstructure'] for constraint in constrained_columns: sum_string = '' for i in range (len(one_hot_columns)): column_one_hot = one_hot_columns[i] if column_one_hot.startswith(constraint): sum_string = sum_string+"+x[:," + str(i) + "]" constraints.append({'name': constraint + "+1", 'constraint': sum_string + '-1'}) constraints.append({'name': constraint + "-1", 'constraint': '-1*(' + sum_string + ')+1'}) def fit_outputs(x): return fit_outputs_constraints(x, hardness_target, ys_target, request) opt = GPyOpt.methods.BayesianOptimization(f = fit_outputs, # function to optimize domain = domain, # box-constraints of the problem constraints = constraints, acquisition_type ='LCB', # LCB acquisition acquisition_weight = 0.1) # Exploration exploitation # it may take a few seconds opt.run_optimization(max_iter=20) opt.plot_convergence() x_best = opt.X[np.argmin(opt.Y)] best_params = dict(zip( [el['name'] for el in domain], [[x] for x in x_best])) optimized_x = pd.DataFrame.from_dict(best_params) #for c in optimized_x.columns: # if c in continuous_variables: # optimized_x[c]=optimized_x[c]*(scaling_factors[c][1]-scaling_factors[c][0])+scaling_factors[c][0] optimized_x = optimized_x[['PROPERTY: Calculated Density (g/cm$^3$)', 'PROPERTY: Calculated Young modulus (GPa)', 'Preprocessing method ANNEAL', 'Preprocessing method CAST', 'Preprocessing method OTHER', 'Preprocessing method POWDER', 'Preprocessing method WROUGHT', 'BCC/FCC/other BCC', 'BCC/FCC/other FCC', 'BCC/FCC/other OTHER', 'Single/Multiphase ', 'Single/Multiphase M', 'Single/Multiphase S']] result = optimized_x result = result[result>0.0].dropna(axis=1) return list(result.keys())[2:] example_inputs = ["Al0.25 Co1 Fe1 Ni1", 820, 1800] css_styling = """#submit {background: #1eccd8} #submit:hover {background: #a2f1f6} .output-image, .input-image, .image-preview {height: 250px !important} .output-plot {height: 250px !important}""" light_theme_colors = gr.themes.Color(c50="#e4f3fa", # Dataframe background cell content - light mode only c100="#e4f3fa", # Top corner of clear button in light mode + markdown text in dark mode c200="#a1c6db", # Component borders c300="#FFFFFF", # c400="#e4f3fa", # Footer text c500="#0c1538", # Text of component headers in light mode only c600="#a1c6db", # Top corner of button in dark mode c700="#475383", # Button text in light mode + component borders in dark mode c800="#0c1538", # Markdown text in light mode c900="#a1c6db", # Background of dataframe - dark mode c950="#0c1538") # Background in dark mode only # secondary color used for highlight box content when typing in light mode, and download option in dark mode # primary color used for login button in dark mode osium_theme = gr.themes.Default(primary_hue="cyan", secondary_hue="cyan", neutral_hue=light_theme_colors) page_title = "Alloys' hardness and yield strength prediction" favicon_path = "osiumai_favicon.ico" logo_path = "osiumai_logo.jpg" html = f""" Osium AI logo """ with gr.Blocks(css=css_styling, title=page_title, theme=osium_theme) as demo: #gr.HTML(html) gr.Markdown("#

Get optimal alloy recommendations based on your target performance

") gr.Markdown("This AI model provides a recommended alloy formula, microstructure and processing conditions based on your target hardness and yield strength") with gr.Row(): clear_button = gr.Button("Clear") prediction_button = gr.Button("Predict", elem_id="submit") with gr.Row(): with gr.Column(): gr.Markdown("### Your alloy formula") formula = gr.Text(label = "Alloy formula") gr.Markdown("### The target performance of your alloy") input_hardness = gr.Text(label="Enter your target hardness (in HV)") input_yield_strength = gr.Text(label="Enter your target yield strength (MPa)") with gr.Column(): with gr.Row(): with gr.Column(): gr.Markdown("### Your optimal microstructure and processing conditions") #optimal_parameters = gr.DataFrame(label="Optimal parameters", wrap=True) with gr.Column(): param1 = gr.Text(label="Processing method") with gr.Column(): param2 = gr.Text(label="Microstructure") with gr.Column(): param3 = gr.Text(label="Phase") #with gr.Row(): #with gr.Column(): #with gr.Row(): # gr.Markdown("### Interpretation of hardness prediction") # gr.Markdown("### Interpretation of yield strength prediction") #with gr.Row(): # output_interpretation = gr.Plot(label="Interpretation") with gr.Row(): gr.Examples([example_inputs], [formula, input_hardness, input_yield_strength]) prediction_button.click( fn=predict_inverse, inputs=[input_hardness, input_yield_strength, formula], outputs=[ param1, param2, param3, ], show_progress=True, ) clear_button.click( lambda x: [gr.update(value=None)] * 6, [], [ param1, param2, param3, input_hardness, input_yield_strength, formula ], ) if __name__ == "__main__": demo.queue(concurrency_count=2) demo.launch()