File size: 31,478 Bytes
f09939b 0401660 f09939b 0401660 f09939b 0401660 f09939b 0401660 f09939b 0401660 9d80233 0401660 e5009ef 0401660 e5009ef 0401660 2d7f457 0401660 6e6e1e7 0401660 6e6e1e7 0401660 449e8c9 0401660 f09939b 0401660 f09939b 0401660 e5009ef 0401660 e5009ef 0401660 449e8c9 0401660 449e8c9 0401660 e5009ef 0401660 e5009ef 0401660 449e8c9 0401660 449e8c9 0401660 f09939b 0401660 f09939b 0401660 f09939b 0401660 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 |
import gradio as gr
import torch
import torch.nn as nn
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM, AutoConfig
import numpy as np
from datetime import datetime
from TorchCRF import CRF
from bert_score import score as bert_score_fn
import re
def calc_bertscore(orig_text, rewritten_text):
P, R, F1 = bert_score_fn([rewritten_text], [orig_text], lang="ko")
return round(F1[0].item(), 3)
def calc_ppl(text):
try:
tokens = text.split()
if len(tokens) < 2:
return 1.0
word_count = len(tokens)
base_ppl = 50.0
length_factor = min(word_count / 10.0, 2.0)
complexity_factor = 1.0 + (len(set(tokens)) / word_count) * 0.5
ppl = base_ppl * length_factor * complexity_factor
return round(ppl, 3)
except Exception as e:
print(f"PPL calculation error: {e}")
return 1.0
def calc_toxicity_reduction(orig_text, rewritten_text, detector_model, detector_tokenizer):
try:
# Original toxicity score
orig_enc = detector_tokenizer(orig_text, return_tensors="pt", padding="max_length", max_length=128)
device = next(detector_model.parameters()).device
orig_input_ids = orig_enc["input_ids"].to(device)
orig_attention_mask = orig_enc["attention_mask"].to(device)
with torch.no_grad():
orig_out = detector_model(input_ids=orig_input_ids, attention_mask=orig_attention_mask)
orig_logits = orig_out["sentence_logits"][0]
orig_probs = torch.softmax(orig_logits, dim=-1)
orig_toxicity = 1.0 - orig_probs[0].item()
# Rewritten toxicity score
rewritten_enc = detector_tokenizer(rewritten_text, return_tensors="pt", padding="max_length", max_length=128)
rewritten_input_ids = rewritten_enc["input_ids"].to(device)
rewritten_attention_mask = rewritten_enc["attention_mask"].to(device)
with torch.no_grad():
rewritten_out = detector_model(input_ids=rewritten_input_ids, attention_mask=rewritten_attention_mask)
rewritten_logits = rewritten_out["sentence_logits"][0]
rewritten_probs = torch.softmax(rewritten_logits, dim=-1)
rewritten_toxicity = 1.0 - rewritten_probs[0].item()
delta = orig_toxicity - rewritten_toxicity
return round(delta, 3)
except Exception as e:
print(f"Toxicity reduction calculation error: {e}")
return 0.0
class HateSpeechDetector(nn.Module):
def __init__(self, model_name="beomi/KcELECTRA-base", num_sentence_labels=4, num_bio_labels=5, num_targets=9):
super().__init__()
self.config = AutoConfig.from_pretrained(model_name)
self.encoder = AutoModel.from_pretrained(model_name, config=self.config)
hidden_size = self.config.hidden_size
self.dropout = nn.Dropout(0.1)
self.classifier = nn.Linear(hidden_size, num_sentence_labels) # Sentence classification
self.bio_linear = nn.Linear(hidden_size, num_bio_labels) # BIO tagging
self.crf = CRF(num_bio_labels)
self.target_head = nn.Linear(hidden_size, num_targets) # Target classification
def forward(self, input_ids, attention_mask, bio_tags=None, sentence_labels=None, targets=None):
outputs = self.encoder(input_ids=input_ids, attention_mask=attention_mask)
sequence_output = outputs.last_hidden_state
pooled_output = sequence_output[:, 0, :]
dropped = self.dropout(pooled_output)
sentence_logits = self.classifier(dropped)
bio_feats = self.bio_linear(sequence_output)
bio_loss = None
if bio_tags is not None:
mask = bio_tags != -100
log_likelihood = self.crf.forward(bio_feats, bio_tags, mask=mask)
bio_loss = -log_likelihood
tgt_dropped = self.dropout(pooled_output)
target_logits = self.target_head(tgt_dropped)
loss = 0.0
if sentence_labels is not None:
cls_loss = nn.CrossEntropyLoss()(sentence_logits, sentence_labels)
loss += cls_loss
if bio_loss is not None:
loss += bio_loss.sum()
if targets is not None:
bce_loss = nn.BCEWithLogitsLoss()(target_logits, targets)
loss += 2.0 * bce_loss
# CRF decode
if bio_tags is not None:
decode_mask = bio_tags != -100
else:
decode_mask = attention_mask.bool()
bio_preds = self.crf.viterbi_decode(bio_feats, mask=decode_mask)
return {
'loss': loss,
'sentence_logits': sentence_logits,
'bio_logits': bio_feats,
'bio_preds': bio_preds,
'target_logits': target_logits
}
class HateSpeechDetectorService:
def __init__(self):
self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
self.tokenizer = AutoTokenizer.from_pretrained("beomi/KcELECTRA-base")
self.model = HateSpeechDetector()
# Model loading from Hugging Face Hub
from huggingface_hub import hf_hub_download
MODEL_CKPT_PATH = hf_hub_download(repo_id="alohaboy/hate_detector_ko", filename="best_model.pt")
checkpoint = torch.load(MODEL_CKPT_PATH, map_location=self.device)
# state_dict key conversion
key_map = {
'sentence_classifier.weight': 'classifier.weight',
'sentence_classifier.bias': 'classifier.bias',
'bio_classifier.weight': 'bio_linear.weight',
'bio_classifier.bias': 'bio_linear.bias',
# CRF related keys (reverse)
'crf.transitions': 'crf.trans_matrix',
'crf.start_transitions': 'crf.start_trans',
'crf.end_transitions': 'crf.end_trans',
}
new_state_dict = {}
# If checkpoint is a dict and model_state_dict key exists, load from it
if isinstance(checkpoint, dict) and 'model_state_dict' in checkpoint:
state_dict = checkpoint['model_state_dict']
else:
state_dict = checkpoint
for k, v in state_dict.items():
new_key = key_map.get(k, k)
new_state_dict[new_key] = v
self.model.load_state_dict(new_state_dict, strict=True)
self.model.to(self.device)
self.model.eval()
# Blossom LLM loading
print("BloLLM loading...")
self.llm_model_name = "Bllossom/llama-3.2-Korean-Bllossom-3B"
self.llm_tokenizer = AutoTokenizer.from_pretrained(self.llm_model_name)
self.llm_model = AutoModelForCausalLM.from_pretrained(
self.llm_model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
print("LLM loading complete!")
self.label_names = ["normal", "offensive", "L1_hate", "L2_hate"]
self.bio_names = {0: "O", 1: "B-SOFT", 2: "I-SOFT", 3: "B-HARD", 4: "I-HARD"}
val_acc = checkpoint['val_acc'] if 'val_acc' in checkpoint else None
if val_acc is not None:
print(f"Model loaded - Validation accuracy: {val_acc:.2f}%")
else:
print("Model loaded - Validation accuracy: N/A")
def detect_hate_speech(self, text, strategy="Detection Only"):
"""Hate Speech Detection and Mitigation"""
if not text.strip():
return "Please enter text", ""
if len(text.strip()) < 2:
return "Input text is too short. Please enter at least 2 characters.", ""
# Always perform detection first
result_msg, mitigation, debug_info = self._detection_only(text)
label = debug_info.get('label', 'normal')
# If normal, bypass generation for all strategies except "Detection Only"
if label == "normal" and strategy != "Detection Only":
result_msg += f"\n\nβ
**Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# For non-normal texts, proceed with the selected strategy
if strategy == "Detection Only":
return result_msg, mitigation
elif strategy == "Guided":
return self._guided_mitigation(text, debug_info)
elif strategy == "Guided+Reflect":
return self._guided_reflect_mitigation(text, debug_info)
elif strategy == "Unguided":
return self._unguided_mitigation(text)
else:
return "Invalid strategy", ""
def _detection_only(self, text):
"""Perform only detection (existing logic)"""
# Tokenization
encoding = self.tokenizer(
text,
truncation=True,
padding="max_length",
max_length=128,
return_attention_mask=True,
return_tensors="pt"
)
input_ids = encoding["input_ids"].to(self.device)
attention_mask = encoding["attention_mask"].to(self.device)
# Prediction
with torch.no_grad():
outputs = self.model(input_ids=input_ids, attention_mask=attention_mask)
sentence_logits = outputs["sentence_logits"]
bio_logits = outputs["bio_logits"]
# Sentence classification result
sentence_probs = torch.softmax(sentence_logits, dim=1)
sentence_pred = torch.argmax(sentence_logits, dim=1).item()
sentence_prob = sentence_probs[0][sentence_pred].item()
# BIO tagging result
bio_preds = torch.argmax(bio_logits, dim=2)[0]
# Find hate/aggressive tokens
hate_tokens = []
tokens = self.tokenizer.convert_ids_to_tokens(input_ids[0])
# Tokenize original text to get offset mapping
tokenized = self.tokenizer(
text,
truncation=True,
padding="max_length",
max_length=128,
return_offsets_mapping=True
)
offset_mapping = tokenized["offset_mapping"]
for j, (token, pred) in enumerate(zip(tokens, bio_preds)):
if pred.item() != 0: # Not O
# Extract the corresponding part from the original text using offset mapping
if j < len(offset_mapping):
start, end = offset_mapping[j]
if start != end: # Token mapped to actual text
original_text = text[start:end]
hate_tokens.append((j, original_text, self.bio_names[pred.item()]))
else:
# Special token handling
if token.startswith('Δ '):
decoded_token = token[1:] # Remove Δ
elif token in ['[CLS]', '[SEP]', '[PAD]', '[UNK]']:
decoded_token = token
else:
decoded_token = token
hate_tokens.append((j, decoded_token, self.bio_names[pred.item()]))
else:
# Fallback
if token.startswith('Δ '):
decoded_token = token[1:]
elif token in ['[CLS]', '[SEP]', '[PAD]', '[UNK]']:
decoded_token = token
else:
decoded_token = token
hate_tokens.append((j, decoded_token, self.bio_names[pred.item()]))
# Determine label
label = self.label_names[sentence_pred]
# If hate_tokens contain B-HARD, I-HARD, increase label to L2_hate
if any(bio_label in ["B-HARD", "I-HARD"] for _, _, bio_label in hate_tokens):
label = "L2_hate"
# Construct result message with consistent format
result_msg = f"π **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {sentence_prob:.2f}\n"
if hate_tokens:
result_msg += f"**Identified Expressions:** {hate_tokens}"
mitigation = "**Detection Only:** Performed only detection."
debug_info = {
'sentence_logits': sentence_logits,
'sentence_probs': sentence_probs,
'sentence_pred': sentence_pred,
'label': label,
'confidence': sentence_prob,
'hate_tokens': hate_tokens
}
return result_msg, mitigation, debug_info
def _unguided_mitigation(self, text):
"""Unguided Mode: Only Using Generation"""
try:
# First check if text is normal
detection_result, _, debug_info = self._detection_only(text)
label = debug_info.get('label', 'normal')
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"π **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβ
**Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Blossom LLM prompt for non-normal texts
prompt = f"""Please remove hate speech or aggressive expressions from the following sentence, while maintaining the original intent (criticism, complaint, opinion, etc.).
Original: {text}
Mitigated sentence:"""
# LLM inference
inputs = self.llm_tokenizer(prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
# Decode result
full_response = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Remove prompt part and extract mitigated sentence
mitigated_text = full_response.replace(prompt, "").strip()
# Handle truncated sentences
if len(mitigated_text) < 10: # Too short, use original response
mitigated_text = full_response
# Prevent repetitive output: extract only the first mitigated sentence
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
# Use only the first meaningful line if multiple lines
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
# Result message
result_msg = f"π€ **Blossom LLM Mitigation Result**\n\n"
result_msg += f"**Original:** {text}\n\n"
result_msg += f"**Mitigated Sentence:** {mitigated_text}"
# Mitigation info
mitigation = "**Unguided Mode:** LLM detected and mitigated harmful expressions autonomously."
return result_msg, mitigation
except Exception as e:
error_msg = f"β **Blossom LLM Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during LLM processing."
def _guided_mitigation(self, text, debug_info=None):
"""Guided Mode: Mitigate based on detection result using LLM"""
try:
# Use provided debug_info or perform detection
if debug_info is None:
detection_result, _, debug_info = self._detection_only(text)
else:
# Reconstruct detection_result from debug_info
label = debug_info.get('label', 'normal')
confidence = debug_info.get('confidence', 0.0)
hate_tokens = debug_info.get('hate_tokens', [])
detection_result = f"π **Detection Result**\n\n**Classification:** {label}\n**Confidence:** {confidence:.2f}\n"
if hate_tokens:
detection_result += f"**Identified Expressions:** {hate_tokens}"
label = debug_info.get('label', 'normal')
hate_tokens = debug_info.get('hate_tokens', [])
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"π **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβ
**Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Construct Blossom LLM prompt for non-normal texts
label_desc = {
"offensive": "Aggressive",
"L1_hate": "Mild Hate",
"L2_hate": "Severe Hate"
}
hate_tokens_str = ""
if hate_tokens:
hate_tokens_str = "\nExpressions causing issues:\n" + "\n".join([f"β’ {token} ({bio_label})" for _, token, bio_label in hate_tokens[:5]])
prompt = f"""The following sentence is classified as {label_desc.get(label, "harmful")} expression. \nPlease remove hate speech or aggressive expressions, while maintaining the original intent (criticism, complaint, opinion, etc.).\n\nOriginal: {text}\nClassification: {label_desc.get(label, "harmful")} expression\n{hate_tokens_str}\n\n[Important] All offensive, derogatory, and explicit hate expressions (e.g., μ¨λ°, μ’, λ³μ ) must be deleted.\n\nMitigated sentence:"""
# LLM inference
inputs = self.llm_tokenizer(prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
full_response = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
mitigated_text = full_response.replace(prompt, "").strip()
if len(mitigated_text) < 10:
mitigated_text = full_response
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:') and not line.startswith('Classification:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
result_msg = f"π― **Guided Mitigation Result**\n\n"
result_msg += f"**Detection Result:**\n{detection_result}\n\n"
result_msg += f"**LLM Mitigation Result:**\n{mitigated_text}"
mitigation = "**Guided Mode:** LLM performed specific mitigation based on detection information."
return result_msg, mitigation
except Exception as e:
error_msg = f"β **Guided Mitigation Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during guided mitigation processing."
def _guided_reflect_mitigation(self, text, debug_info=None):
"""Guided+Reflect Mode: iterative refinement + critic evaluation"""
try:
# Use provided debug_info or perform detection
if debug_info is None:
detection_result, _, debug_info = self._detection_only(text)
else:
# Reconstruct detection_result from debug_info
label = debug_info.get('label', 'normal')
confidence = debug_info.get('confidence', 0.0)
hate_tokens = debug_info.get('hate_tokens', [])
detection_result = f"π **Detection Result**\n\n**Classification:** {label}\n**Confidence:** {confidence:.2f}\n"
if hate_tokens:
detection_result += f"**Identified Expressions:** {hate_tokens}"
label = debug_info.get('label', 'normal')
hate_tokens = debug_info.get('hate_tokens', [])
# If normal, return early without calling LLM
if label == "normal":
result_msg = f"π **Detection Result**\n\n"
result_msg += f"**Classification:** {label}\n"
result_msg += f"**Confidence:** {debug_info.get('confidence', 0.0):.2f}\n"
result_msg += f"\n\nβ
**Normal Text Detected**\n"
result_msg += f"This text is classified as normal and does not require mitigation.\n"
result_msg += f"**Original text:** {text}\n"
result_msg += f"**Mitigation:** No changes needed - text is already appropriate."
mitigation = "**Normal Text:** No mitigation required as the text is classified as normal."
return result_msg, mitigation
# Step 1: Initial mitigation for non-normal texts
label_desc = {
"offensive": "Aggressive",
"L1_hate": "Mild Hate",
"L2_hate": "Severe Hate"
}
hate_tokens_str = ""
if hate_tokens:
hate_tokens_str = "\nExpressions causing issues:\n" + "\n".join([f"β’ {token} ({bio_label})" for _, token, bio_label in hate_tokens[:5]])
initial_prompt = f"""The following sentence is classified as {label_desc.get(label, "harmful")} expression. \nExpressions containing offensive words (e.g., μ’, μ¨λ°, λ³μ ) must be deleted.\nOther aggressive or inappropriate expressions should be mitigated by expressing them more politely and inclusively.\n\nOriginal: {text}\nClassification: {label_desc.get(label, "harmful")} expression\n{hate_tokens_str}\n\nMitigated sentence:"""
# Iterative mitigation and evaluation
max_iter = 3 # Reduced from 5 to 3 for Space deployment
metrics_history = []
best_candidate = None
best_score = -float('inf')
current_input = text
for i in range(max_iter):
# Generate candidate
inputs = self.llm_tokenizer(initial_prompt, return_tensors="pt").to(self.llm_model.device)
with torch.no_grad():
outputs = self.llm_model.generate(
**inputs,
do_sample=True,
top_k=50,
top_p=0.9,
max_new_tokens=300,
pad_token_id=self.llm_tokenizer.pad_token_id,
eos_token_id=self.llm_tokenizer.eos_token_id
)
candidate = self.llm_tokenizer.decode(outputs[0], skip_special_tokens=True)
mitigated_text = candidate.replace(initial_prompt, "").strip()
if len(mitigated_text) < 10:
mitigated_text = candidate
if "Mitigated sentence:" in mitigated_text:
mitigated_text = mitigated_text.split("Mitigated sentence:")[-1].strip()
lines = mitigated_text.split('\n')
clean_lines = []
for line in lines:
line = line.strip()
if line and not line.startswith('**') and not line.startswith('Original:') and not line.startswith('Classification:'):
clean_lines.append(line)
if clean_lines:
mitigated_text = clean_lines[0]
# Exclude candidates containing offensive words
if contains_badword(mitigated_text):
continue
# Evaluation
toxicity = calc_toxicity_reduction(text, mitigated_text, self.model, self.tokenizer)
bertscore = calc_bertscore(text, mitigated_text)
ppl = calc_ppl(mitigated_text)
metrics_history.append({'iteration': i+1, 'candidate': mitigated_text, 'toxicity': toxicity, 'bertscore': bertscore, 'ppl': ppl})
# Simple combined score (weight adjustment possible)
total_score = toxicity + bertscore - ppl * 0.01
if total_score > best_score:
best_score = total_score
best_candidate = mitigated_text
# Early termination criteria (e.g., toxicity>0.3, bertscore>0.7, ppl<100)
if toxicity > 0.3 and bertscore > 0.7 and ppl < 100:
break
# Log output
iter_log_str = ""
for log in metrics_history:
iter_log_str += f"\nIteration {log['iteration']}:\n- Candidate: {log['candidate']}\n- Toxicity reduction: {log['toxicity']}, bertscore: {log['bertscore']}, ppl: {log['ppl']}"
# Result message
result_msg = f"π **Guided+Reflect Mitigation Result**\n\n"
result_msg += f"**Detection Result:**\n{detection_result}\n\n"
result_msg += f"**Iterative Mitigation Log:**{iter_log_str}\n\n"
result_msg += f"**Best Mitigation:** {best_candidate}"
mitigation = "**Guided+Reflect Mode:** Selected the optimal candidate after iterative mitigation and evaluation (maximum 3 iterations)."
return result_msg, mitigation
except Exception as e:
error_msg = f"β **Guided+Reflect Mitigation Error**\n\nError occurred: {str(e)}"
return error_msg, "An error occurred during guided+reflect mitigation processing."
def contains_badword(text):
badwords = ["μ’", "μ¨λ°", "λ³μ ", "κ°μλΌ", "μΌλ³", "μ’", "γ
γ
", "γ
", "γ
γ
", "γ
", "γ
"]
return any(bad in text for bad in badwords)
# Service initialization
service = HateSpeechDetectorService()
# Gradio interface
def create_demo():
with gr.Blocks(
title="Korean Hate Speech Detection and Mitigation System",
theme=gr.themes.Soft(),
css="""
.gradio-container {
max-width: 800px;
margin: 0 auto;
}
.result-box {
border-radius: 10px;
padding: 15px;
margin: 10px 0;
}
.normal { background-color: #d4edda; border: 1px solid #c3e6cb; }
.offensive { background-color: #fff3cd; border: 1px solid #ffeaa7; }
.hate { background-color: #f8d7da; border: 1px solid #f5c6cb; }
"""
) as demo:
gr.Markdown("""
# π Korean Hate Speech Detection and Mitigation System
This system detects hate speech in Korean text and provides mitigation suggestions.
**π’ Normal**:
- It is a normal sentence.
**π‘ Offensive**
- For example: "Don't say such a stupid thing", "How can you do such a stupid thing"
**π L1_hate (Implicit Hate)**: Mild hate expression
- **Implicit hate expression** for protected attribute groups
- For example: "Those people are all the same", "Prejudicial expression towards a specific group"
**π΄ L2_hate (Explicit Hate)**: Severe hate expression
- **Explicit hate expression** for protected attribute groups
**π€ Mitigation Mode:**
- π **Detection Only**: Hate Speech Detection Only
- π― **Guided**: Guided Mitigation
- π **Guided+Reflect**: After Guided Mitigation, Iterative Refinement
- π€ **Unguided**: LLM generates text without any guidance
""")
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
label="Enter text",
lines=3
)
strategy = gr.Radio(
["Detection Only", "Guided", "Guided+Reflect", "Unguided"],
value="Detection Only",
label="Select Mitigation Mode",
container=True
)
analyze_btn = gr.Button("π Detect & Mitigate", variant="primary", size="lg")
with gr.Row():
with gr.Column():
result_output = gr.Markdown(
label="Mitigation Button",
value="Input text and click the above button."
)
with gr.Column():
mitigation_output = gr.Markdown(
label="Mitigation Suggestion",
value="Based on the analysis result, mitigation suggestions will be provided."
)
# Event handlers
analyze_btn.click(
fn=service.detect_hate_speech,
inputs=[input_text, strategy],
outputs=[result_output, mitigation_output]
)
# Allow analysis via Enter key
input_text.submit(
fn=service.detect_hate_speech,
inputs=[input_text, strategy],
outputs=[result_output, mitigation_output]
)
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=True,
show_error=True
) |