File size: 2,208 Bytes
2c8df0b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
import solara
import time
import random
from typing import List
from typing_extensions import TypedDict

# Streamed response emulator
def response_generator():
    response = random.choice(
        [
            "Hello! How can I assist you today?",
            "Hey there! If you have any questions or need help with something, feel free to ask.",
        ]
    )
    for word in response.split():
        yield word + " "
        time.sleep(0.05)

class MessageDict(TypedDict):
    role: str
    content: str

messages: solara.Reactive[List[MessageDict]] = solara.reactive([])

def add_chunk_to_ai_message(chunk: str):
    messages.value = [
        *messages.value[:-1],
        {
            "role": "assistant",
            "content": messages.value[-1]["content"] + chunk,
        },
    ]

@solara.component
def Page():
    with solara.Column(style={"padding": "30px"}):
        solara.Title("StreamBot")
        solara.Markdown("#StreamBot")
        user_message_count = len([m for m in messages.value if m["role"] == "user"])

        def send(message):
            messages.value = [
                *messages.value,
                {"role": "user", "content": message},
            ]

        def response(message):
            messages.value = [*messages.value, {"role": "assistant", "content": ""}]
            for chunk in response_generator():
                add_chunk_to_ai_message(chunk)


        def result():
            if messages.value !=[]: response(messages.value[-1]["content"])

        result = solara.lab.use_task(result, dependencies=[user_message_count])  # type: ignore

        with solara.Column(style={"width": "70%"}):
            with solara.lab.ChatBox():
                for item in messages.value:
                    with solara.lab.ChatMessage(
                        user=item["role"] == "user",
                        name="Echobot" if item["role"] == "assistant" else "User",
                        avatar_background_color="#33cccc" if item["role"] == "assistant" else "#ff991f",
                        border_radius="20px",
                    ):
                        solara.Markdown(item["content"])
            solara.lab.ChatInput(send_callback=send)