alxd
commited on
Commit
Β·
c59b529
1
Parent(s):
320f15a
added openai and max_tokens
Browse files- requirements.txt +3 -1
- scoutLLM.py +106 -40
requirements.txt
CHANGED
|
@@ -1,7 +1,7 @@
|
|
| 1 |
gradio==3.40.0
|
| 2 |
langchain-community==0.0.19
|
| 3 |
langchain_core==0.1.22
|
| 4 |
-
langchain-openai==0.0.5
|
| 5 |
faiss-cpu==1.7.3
|
| 6 |
huggingface-hub==0.24.7
|
| 7 |
google-generativeai==0.3.2
|
|
@@ -56,3 +56,5 @@ google-auth-oauthlib
|
|
| 56 |
google-auth-httplib2
|
| 57 |
|
| 58 |
pyperclip
|
|
|
|
|
|
|
|
|
| 1 |
gradio==3.40.0
|
| 2 |
langchain-community==0.0.19
|
| 3 |
langchain_core==0.1.22
|
| 4 |
+
#langchain-openai==0.0.5
|
| 5 |
faiss-cpu==1.7.3
|
| 6 |
huggingface-hub==0.24.7
|
| 7 |
google-generativeai==0.3.2
|
|
|
|
| 56 |
google-auth-httplib2
|
| 57 |
|
| 58 |
pyperclip
|
| 59 |
+
|
| 60 |
+
openai==0.28
|
scoutLLM.py
CHANGED
|
@@ -20,7 +20,8 @@ from googleapiclient.discovery import build
|
|
| 20 |
import base64
|
| 21 |
from google.oauth2.credentials import Credentials
|
| 22 |
from google.auth.transport.requests import Request
|
| 23 |
-
|
|
|
|
| 24 |
|
| 25 |
# ------------------------------
|
| 26 |
# Helper functions and globals
|
|
@@ -28,6 +29,7 @@ from google.auth.transport.requests import Request
|
|
| 28 |
sheet_data = None
|
| 29 |
file_name = None
|
| 30 |
sheet = None
|
|
|
|
| 31 |
|
| 32 |
def debug_print(message: str):
|
| 33 |
print(f"[{datetime.datetime.now().isoformat()}] {message}", flush=True)
|
|
@@ -49,40 +51,95 @@ def count_tokens(text: str) -> int:
|
|
| 49 |
return len(text.split())
|
| 50 |
return len(text.split())
|
| 51 |
|
| 52 |
-
def
|
| 53 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 54 |
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
raise ValueError("MISTRAL_API_KEY environment variable not set.")
|
| 59 |
-
mistral_client = Mistral(api_key=mistral_api_key)
|
| 60 |
-
response = mistral_client.chat.complete(
|
| 61 |
-
model="mistral-small-latest",
|
| 62 |
-
messages=[{"role": "user", "content": full_prompt}],
|
| 63 |
-
temperature=0.7,
|
| 64 |
-
top_p=0.95
|
| 65 |
-
)
|
| 66 |
-
return response.choices[0].message.content
|
| 67 |
-
|
| 68 |
-
elif "Meta-Llama" in model_name:
|
| 69 |
-
hf_api_token = os.getenv("HF_API_TOKEN")
|
| 70 |
-
if not hf_api_token:
|
| 71 |
-
raise ValueError("HF_API_TOKEN environment variable not set.")
|
| 72 |
-
client = InferenceClient(token=hf_api_token)
|
| 73 |
-
response = client.text_generation(
|
| 74 |
-
full_prompt,
|
| 75 |
-
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 76 |
-
temperature=0.7,
|
| 77 |
-
top_p=0.95,
|
| 78 |
-
max_new_tokens=512
|
| 79 |
-
)
|
| 80 |
-
return response
|
| 81 |
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
| 86 |
def process_query(prompt: str, model_name: str):
|
| 87 |
global sheet_data
|
| 88 |
|
|
@@ -103,9 +160,6 @@ def process_query(prompt: str, model_name: str):
|
|
| 103 |
# Return the response along with token counts
|
| 104 |
return response, f"Input tokens: {input_tokens}", f"Output tokens: {output_tokens}"
|
| 105 |
|
| 106 |
-
def ui_process_query(prompt, model_name):
|
| 107 |
-
return process_query(prompt, model_name)
|
| 108 |
-
|
| 109 |
# ------------------------------
|
| 110 |
# Global variables for background jobs
|
| 111 |
# ------------------------------
|
|
@@ -182,10 +236,12 @@ def process_in_background(job_id, func, args):
|
|
| 182 |
debug_print(f"Job {job_id} finished processing in background.")
|
| 183 |
|
| 184 |
|
| 185 |
-
def submit_query_async(query, model_choice
|
| 186 |
"""Asynchronous version of submit_query_updated to prevent timeouts."""
|
| 187 |
global last_job_id
|
| 188 |
global sheet_data
|
|
|
|
|
|
|
| 189 |
|
| 190 |
if not query:
|
| 191 |
return ("Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0", "", "", get_job_list())
|
|
@@ -197,6 +253,7 @@ def submit_query_async(query, model_choice=None):
|
|
| 197 |
if sheet_data is None:
|
| 198 |
sheet_data = get_sheet_data()
|
| 199 |
|
|
|
|
| 200 |
query = f"{query}\n\nSheet Data:\n{sheet_data}" # Append sheet data to prompt
|
| 201 |
|
| 202 |
# Start background thread to process the query
|
|
@@ -510,11 +567,21 @@ with gr.Blocks() as app:
|
|
| 510 |
with gr.Column(scale=1):
|
| 511 |
gr.Markdown("### π Submit Query")
|
| 512 |
gr.Markdown("Enter your prompt below and choose a model. Your query will be processed in the background.")
|
|
|
|
|
|
|
| 513 |
model_dropdown = gr.Dropdown(
|
| 514 |
-
choices=[
|
| 515 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 516 |
label="Select Model"
|
| 517 |
)
|
|
|
|
|
|
|
| 518 |
prompt_input = gr.Textbox(label="Enter your prompt", value=default_prompt, lines=6)
|
| 519 |
with gr.Row():
|
| 520 |
auto_refresh_checkbox = gr.Checkbox(
|
|
@@ -562,7 +629,6 @@ with gr.Blocks() as app:
|
|
| 562 |
def load_file(file, sheet_name):
|
| 563 |
global sheet_data
|
| 564 |
global file_name
|
| 565 |
-
global sheet
|
| 566 |
file_name = file
|
| 567 |
sheet = sheet_name
|
| 568 |
|
|
@@ -585,7 +651,7 @@ with gr.Blocks() as app:
|
|
| 585 |
# When submitting a query asynchronously
|
| 586 |
submit_button.click(
|
| 587 |
fn=submit_query_async,
|
| 588 |
-
inputs=[prompt_input, model_dropdown],
|
| 589 |
outputs=[
|
| 590 |
response_output, token_info,
|
| 591 |
input_tokens_display, output_tokens_display,
|
|
|
|
| 20 |
import base64
|
| 21 |
from google.oauth2.credentials import Credentials
|
| 22 |
from google.auth.transport.requests import Request
|
| 23 |
+
import openai # Correct OpenAI import
|
| 24 |
+
from openai.error import RateLimitError # Import rate limit error handling
|
| 25 |
|
| 26 |
# ------------------------------
|
| 27 |
# Helper functions and globals
|
|
|
|
| 29 |
sheet_data = None
|
| 30 |
file_name = None
|
| 31 |
sheet = None
|
| 32 |
+
slider_max_tokens = None
|
| 33 |
|
| 34 |
def debug_print(message: str):
|
| 35 |
print(f"[{datetime.datetime.now().isoformat()}] {message}", flush=True)
|
|
|
|
| 51 |
return len(text.split())
|
| 52 |
return len(text.split())
|
| 53 |
|
| 54 |
+
def get_model_max_tokens(model_name: str) -> int:
|
| 55 |
+
"""Return the max context length for the selected model."""
|
| 56 |
+
model_token_limits = {
|
| 57 |
+
"GPT-3.5": 16385,
|
| 58 |
+
"GPT-4o": 128000,
|
| 59 |
+
"GPT-4o mini": 128000,
|
| 60 |
+
"Meta-Llama-3": 4096, # Adjust based on actual limits
|
| 61 |
+
"Mistral-API": 128000 # Adjust based on actual limits
|
| 62 |
+
}
|
| 63 |
+
for key in model_token_limits:
|
| 64 |
+
if key in model_name:
|
| 65 |
+
return model_token_limits[key]
|
| 66 |
+
return 4096 # Default safety limit
|
| 67 |
+
|
| 68 |
+
def get_model_max_tokens(model_name: str) -> int:
|
| 69 |
+
"""Return the max context length for the selected model."""
|
| 70 |
+
model_token_limits = {
|
| 71 |
+
"GPT-3.5": 16385,
|
| 72 |
+
"GPT-4o": 128000,
|
| 73 |
+
"GPT-4o mini": 128000,
|
| 74 |
+
"Meta-Llama-3": 4096,
|
| 75 |
+
"Mistral-API": 4096
|
| 76 |
+
}
|
| 77 |
+
for key in model_token_limits:
|
| 78 |
+
if key in model_name:
|
| 79 |
+
return model_token_limits[key]
|
| 80 |
+
return 4096 # Default safety limit
|
| 81 |
+
|
| 82 |
+
|
| 83 |
+
def generate_response(prompt: str, model_name: str, sheet_data: str = "") -> str:
|
| 84 |
+
global slider_max_tokens
|
| 85 |
|
| 86 |
+
full_prompt = f"{prompt}\n\nSheet Data:\n{sheet_data}" if sheet_data else prompt
|
| 87 |
+
max_context_tokens = get_model_max_tokens(model_name)
|
| 88 |
+
max_tokens = min(slider_max_tokens, max_context_tokens)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
try:
|
| 91 |
+
if "Mistral" in model_name:
|
| 92 |
+
mistral_api_key = os.getenv("MISTRAL_API_KEY")
|
| 93 |
+
if not mistral_api_key:
|
| 94 |
+
raise ValueError("MISTRAL_API_KEY environment variable not set.")
|
| 95 |
+
mistral_client = Mistral(api_key=mistral_api_key)
|
| 96 |
+
response = mistral_client.chat.complete(
|
| 97 |
+
model="mistral-small-latest",
|
| 98 |
+
messages=[{"role": "user", "content": full_prompt[:max_tokens]}],
|
| 99 |
+
temperature=0.7,
|
| 100 |
+
top_p=0.95
|
| 101 |
+
)
|
| 102 |
+
return f"[Model: {model_name}]" + response.choices[0].message.content
|
| 103 |
+
|
| 104 |
+
elif "Meta-Llama" in model_name:
|
| 105 |
+
hf_api_token = os.getenv("HF_API_TOKEN")
|
| 106 |
+
if not hf_api_token:
|
| 107 |
+
raise ValueError("HF_API_TOKEN environment variable not set.")
|
| 108 |
+
client = InferenceClient(token=hf_api_token)
|
| 109 |
+
response = client.text_generation(
|
| 110 |
+
full_prompt[:max_tokens],
|
| 111 |
+
model="meta-llama/Meta-Llama-3-8B-Instruct",
|
| 112 |
+
temperature=0.7,
|
| 113 |
+
top_p=0.95,
|
| 114 |
+
max_new_tokens=max_tokens
|
| 115 |
+
)
|
| 116 |
+
return f"[Model: {model_name}]" + response
|
| 117 |
+
|
| 118 |
+
elif any(model in model_name for model in ["GPT-3.5", "GPT-4o", "GPT-4o mini"]):
|
| 119 |
+
model_map = {
|
| 120 |
+
"GPT-3.5": "gpt-3.5-turbo",
|
| 121 |
+
"GPT-4o": "gpt-4o",
|
| 122 |
+
"GPT-4o mini": "gpt-4o-mini"
|
| 123 |
+
}
|
| 124 |
+
model = next((model_map[key] for key in model_map if key in model_name), None)
|
| 125 |
+
|
| 126 |
+
if not model:
|
| 127 |
+
raise ValueError(f"Unsupported OpenAI model: {model_name}")
|
| 128 |
+
|
| 129 |
+
response = openai.ChatCompletion.create(
|
| 130 |
+
model=model,
|
| 131 |
+
messages=[{"role": "user", "content": full_prompt[:max_tokens]}],
|
| 132 |
+
temperature=0.7,
|
| 133 |
+
max_tokens=max_tokens
|
| 134 |
+
)
|
| 135 |
+
return f"[Model: {model_name}]" + response["choices"][0]["message"]["content"]
|
| 136 |
+
|
| 137 |
+
except Exception as e:
|
| 138 |
+
debug_print(f"β Error generating response: {str(e)}")
|
| 139 |
+
return f"[Model: {model_name}][Error] {str(e)}"
|
| 140 |
|
| 141 |
+
|
| 142 |
+
|
| 143 |
def process_query(prompt: str, model_name: str):
|
| 144 |
global sheet_data
|
| 145 |
|
|
|
|
| 160 |
# Return the response along with token counts
|
| 161 |
return response, f"Input tokens: {input_tokens}", f"Output tokens: {output_tokens}"
|
| 162 |
|
|
|
|
|
|
|
|
|
|
| 163 |
# ------------------------------
|
| 164 |
# Global variables for background jobs
|
| 165 |
# ------------------------------
|
|
|
|
| 236 |
debug_print(f"Job {job_id} finished processing in background.")
|
| 237 |
|
| 238 |
|
| 239 |
+
def submit_query_async(query, model_choice, max_tokens_slider):
|
| 240 |
"""Asynchronous version of submit_query_updated to prevent timeouts."""
|
| 241 |
global last_job_id
|
| 242 |
global sheet_data
|
| 243 |
+
global slider_max_tokens
|
| 244 |
+
slider_max_tokens = max_tokens_slider
|
| 245 |
|
| 246 |
if not query:
|
| 247 |
return ("Please enter a non-empty query", "", "Input tokens: 0", "Output tokens: 0", "", "", get_job_list())
|
|
|
|
| 253 |
if sheet_data is None:
|
| 254 |
sheet_data = get_sheet_data()
|
| 255 |
|
| 256 |
+
|
| 257 |
query = f"{query}\n\nSheet Data:\n{sheet_data}" # Append sheet data to prompt
|
| 258 |
|
| 259 |
# Start background thread to process the query
|
|
|
|
| 567 |
with gr.Column(scale=1):
|
| 568 |
gr.Markdown("### π Submit Query")
|
| 569 |
gr.Markdown("Enter your prompt below and choose a model. Your query will be processed in the background.")
|
| 570 |
+
# Update the model dropdown in the Gradio UI
|
| 571 |
+
# Update the model dropdown in the Gradio UI
|
| 572 |
model_dropdown = gr.Dropdown(
|
| 573 |
+
choices=[
|
| 574 |
+
"πΊπΈ GPT-3.5",
|
| 575 |
+
"πΊπΈ GPT-4o",
|
| 576 |
+
"πΊπΈ GPT-4o mini",
|
| 577 |
+
"πΊπΈ Remote Meta-Llama-3",
|
| 578 |
+
"πͺπΊ Mistral-API",
|
| 579 |
+
],
|
| 580 |
+
value="πΊπΈ GPT-4o mini", # Default model set to Mistral
|
| 581 |
label="Select Model"
|
| 582 |
)
|
| 583 |
+
max_tokens_slider = gr.Slider(minimum=50, maximum=4096, value=512, label="π’ Max Tokens", step=50)
|
| 584 |
+
|
| 585 |
prompt_input = gr.Textbox(label="Enter your prompt", value=default_prompt, lines=6)
|
| 586 |
with gr.Row():
|
| 587 |
auto_refresh_checkbox = gr.Checkbox(
|
|
|
|
| 629 |
def load_file(file, sheet_name):
|
| 630 |
global sheet_data
|
| 631 |
global file_name
|
|
|
|
| 632 |
file_name = file
|
| 633 |
sheet = sheet_name
|
| 634 |
|
|
|
|
| 651 |
# When submitting a query asynchronously
|
| 652 |
submit_button.click(
|
| 653 |
fn=submit_query_async,
|
| 654 |
+
inputs=[prompt_input, model_dropdown, max_tokens_slider],
|
| 655 |
outputs=[
|
| 656 |
response_output, token_info,
|
| 657 |
input_tokens_display, output_tokens_display,
|