Spaces:
Sleeping
Sleeping
Amamrnaf
commited on
Commit
·
6e805b9
1
Parent(s):
2cf3347
app done ?
Browse files- app.py +158 -13
- dataSchema.py +12 -0
- functions.py +48 -0
app.py
CHANGED
|
@@ -1,25 +1,170 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
def process_pdf(file, option):
|
| 5 |
if file is None:
|
| 6 |
return "Please upload a PDF file."
|
| 7 |
|
| 8 |
try:
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
| 15 |
|
| 16 |
# Process based on the selected option
|
| 17 |
-
if option == "
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
return
|
| 21 |
-
|
| 22 |
-
|
|
|
|
|
|
|
| 23 |
except Exception as e:
|
| 24 |
return f"An error occurred: {e}"
|
| 25 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import pymupdf # PyMuPDF for handling PDF files
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import os
|
| 5 |
+
from functions import get_image_informations
|
| 6 |
+
from dataSchema import *
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def Noc_timeSheet_pdf_to_img(pdf_path,output_path,dpi: int = 300, quality: int = 95):
|
| 11 |
+
pdf_document = pymupdf.open(pdf_path)
|
| 12 |
+
|
| 13 |
+
# Get the first page of the PDF
|
| 14 |
+
page = pdf_document.load_page(0) # 0 is the first page
|
| 15 |
+
|
| 16 |
+
# Convert the page to a pixmap (image)
|
| 17 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
# Convert the pixmap to a PIL Image and save as JPG
|
| 21 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 22 |
+
|
| 23 |
+
width, height = image.size
|
| 24 |
+
start_y_total_table = int(height* 0.42)
|
| 25 |
+
end_y_first_table = int(height*0.30)
|
| 26 |
+
|
| 27 |
+
croped1 = image.crop((0, 0, width//2, end_y_first_table))
|
| 28 |
+
croped2 = image.crop((0, start_y_total_table, width//2, height))
|
| 29 |
+
upper_width, upper_height = croped1.size
|
| 30 |
+
lower_width, lower_height = croped2.size
|
| 31 |
+
combined_image = Image.new('RGB', (upper_width, upper_height + lower_height))
|
| 32 |
+
|
| 33 |
+
# Paste the upper image (croped1) on top
|
| 34 |
+
combined_image.paste(croped1, (0, 0))
|
| 35 |
+
|
| 36 |
+
# Paste the lower image (croped2) below the upper image
|
| 37 |
+
combined_image.paste(croped2, (0, upper_height))
|
| 38 |
+
|
| 39 |
+
# Save the combined image
|
| 40 |
+
combined_image.save(output_path, "JPEG",quality=quality)
|
| 41 |
+
|
| 42 |
+
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL
|
| 43 |
+
# import boto3
|
| 44 |
+
|
| 45 |
+
# s3_client = boto3.client('s3', region_name=S3_REGION)
|
| 46 |
+
# s3_client.upload_file(output_path, S3_BUCKET, key)
|
| 47 |
+
|
| 48 |
+
# file_url = f"{S3_URL}/{key}"
|
| 49 |
+
|
| 50 |
+
# return file_url
|
| 51 |
+
|
| 52 |
+
# return output_path
|
| 53 |
+
|
| 54 |
+
def Clauses_in_invoice(pdf_path: str) -> bool:
|
| 55 |
+
"""
|
| 56 |
+
Extract text from the last page of a PDF.
|
| 57 |
+
"""
|
| 58 |
+
pdf_document = pymupdf.open(pdf_path)
|
| 59 |
+
total_pages = pdf_document.page_count
|
| 60 |
+
last_page = pdf_document.load_page(total_pages - 1)
|
| 61 |
+
text = last_page.get_text()
|
| 62 |
+
pdf_document.close()
|
| 63 |
+
if "clauses" in text.lower():
|
| 64 |
+
return True
|
| 65 |
+
else:
|
| 66 |
+
return False
|
| 67 |
+
|
| 68 |
+
def Noc_invoice_pdf_to_img(pdf_path: str, folder_path: str, dpi: int = 300, quality: int = 95):
|
| 69 |
+
|
| 70 |
+
pdf_document = pymupdf.open(pdf_path)
|
| 71 |
+
folder_path = folder_path.rstrip(os.sep)
|
| 72 |
+
os.makedirs(folder_path, exist_ok=True)
|
| 73 |
+
|
| 74 |
+
pdf_name = os.path.splitext(os.path.basename(pdf_path))[0]
|
| 75 |
+
total_pages = pdf_document.page_count
|
| 76 |
+
image_paths=[]
|
| 77 |
+
for page_num in range(total_pages):
|
| 78 |
+
page = pdf_document.load_page(page_num)
|
| 79 |
+
pix = page.get_pixmap(dpi=dpi)
|
| 80 |
+
image = Image.frombytes("RGB", [pix.width, pix.height], pix.samples)
|
| 81 |
+
|
| 82 |
+
output_path = os.path.join(folder_path, f"{pdf_name}_page_{page_num + 1}.jpg")
|
| 83 |
+
image.save(output_path, "JPEG", quality=quality)
|
| 84 |
+
|
| 85 |
+
#-----------S3------------ need S3_BUCKET,S3_REGION,S3_URL
|
| 86 |
+
# import boto3
|
| 87 |
+
|
| 88 |
+
# s3_client = boto3.client('s3', region_name=S3_REGION)
|
| 89 |
+
# s3_client.upload_file(output_path, S3_BUCKET, key)
|
| 90 |
+
|
| 91 |
+
# file_url = f"{S3_URL}/{key}"
|
| 92 |
+
|
| 93 |
+
# append the s3 links
|
| 94 |
+
# image_paths.append(file_url)
|
| 95 |
+
|
| 96 |
+
|
| 97 |
+
image_paths.append(output_path)
|
| 98 |
+
|
| 99 |
+
pdf_document.close()
|
| 100 |
+
return image_paths
|
| 101 |
+
|
| 102 |
+
def delete_images(image_paths):
|
| 103 |
+
# Iterate through the list of image paths
|
| 104 |
+
for image_path in image_paths:
|
| 105 |
+
try:
|
| 106 |
+
# Check if the file exists before attempting to delete
|
| 107 |
+
if os.path.exists(image_path):
|
| 108 |
+
os.remove(image_path)
|
| 109 |
+
print(f"Deleted: {image_path}")
|
| 110 |
+
else:
|
| 111 |
+
print(f"File not found: {image_path}")
|
| 112 |
+
except Exception as e:
|
| 113 |
+
print(f"Error deleting {image_path}: {e}")
|
| 114 |
+
|
| 115 |
+
def noc_invoice_extraction(pdf_path: str,folder_path):
|
| 116 |
+
|
| 117 |
+
image_paths=Noc_invoice_pdf_to_img(pdf_path,folder_path)
|
| 118 |
+
data = {}
|
| 119 |
+
result = get_image_informations(image_paths[0],invoice_first_page_prompt,Noc_PurchaseOrder_information_parser)
|
| 120 |
+
data.update(result)
|
| 121 |
+
result = get_image_informations(image_paths[1],invoice_item_page1_prompt,Noc_PurchaseOrder_item1_parser)
|
| 122 |
+
data.update(result)
|
| 123 |
+
if Clauses_in_invoice(pdf_path):
|
| 124 |
+
for pic in range(len(image_paths)-4):
|
| 125 |
+
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser)
|
| 126 |
+
for item in new_item["items"]:
|
| 127 |
+
data["items"].append(item)
|
| 128 |
+
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser)
|
| 129 |
+
data.update(result)
|
| 130 |
+
result = get_image_informations(image_paths[-1],invoice_clauses_page_prompt,Noc_PurchaseOrder_clauses_parser)
|
| 131 |
+
data.update(result)
|
| 132 |
+
delete_images(image_paths)
|
| 133 |
+
return data
|
| 134 |
+
else:
|
| 135 |
+
for pic in range(len(image_paths)-3):
|
| 136 |
+
new_item = get_image_informations(image_paths[pic+2],invoice_item_pages_prompt,Noc_PurchaseOrder_items_parser)
|
| 137 |
+
for item in new_item["items"]:
|
| 138 |
+
data["items"].append(item)
|
| 139 |
+
result = get_image_informations(image_paths[-2],invoice_total_page_prompt,Noc_PurchaseOrder_total_parser)
|
| 140 |
+
data.update(result)
|
| 141 |
+
delete_images(image_paths)
|
| 142 |
+
return data
|
| 143 |
+
|
| 144 |
|
| 145 |
def process_pdf(file, option):
|
| 146 |
if file is None:
|
| 147 |
return "Please upload a PDF file."
|
| 148 |
|
| 149 |
try:
|
| 150 |
+
|
| 151 |
+
save_dir = "uploaded_files"
|
| 152 |
+
os.makedirs(save_dir, exist_ok=True) # Create the directory if it doesn't exist
|
| 153 |
+
|
| 154 |
+
# Save the uploaded file
|
| 155 |
+
file_path = os.path.join(save_dir, file.name)
|
| 156 |
+
with open(file_path, "wb") as f:
|
| 157 |
+
f.write(file.read())
|
| 158 |
|
| 159 |
# Process based on the selected option
|
| 160 |
+
if option == "Noc_timesheet_resdiential":
|
| 161 |
+
Noc_timeSheet_pdf_to_img(file_path,"output.jpg")
|
| 162 |
+
result = get_image_informations("output.jpg",Noc_Res_timesheet_prompt,Noc_Res_timeSheet_parser)
|
| 163 |
+
return result
|
| 164 |
+
# elif option == "Option 2":
|
| 165 |
+
# return f"Option 2 selected. Extracted text:\n{text[:500]}..." # Truncated for brevity
|
| 166 |
+
# else:
|
| 167 |
+
# return "Invalid option selected."
|
| 168 |
except Exception as e:
|
| 169 |
return f"An error occurred: {e}"
|
| 170 |
|
dataSchema.py
CHANGED
|
@@ -1,5 +1,6 @@
|
|
| 1 |
from pydantic import BaseModel, Field
|
| 2 |
from typing import Optional,List
|
|
|
|
| 3 |
|
| 4 |
class Noc_Residential_TimeSheetInformation(BaseModel):
|
| 5 |
"""Details of a timesheet entry."""
|
|
@@ -88,6 +89,7 @@ class Noc_PurchaseOrderInformation(BaseModel):
|
|
| 88 |
your_reference: Optional[str] = Field(None, description="under Your reference title.")
|
| 89 |
incoterms: Optional[str] = Field(None, description="Incoterms applicable to the order.")
|
| 90 |
total_value_of_order: str = Field(..., description="Total value of the purchase order.")
|
|
|
|
| 91 |
signature_released_by: str = Field(None, description="Name of the person who released the purchase order.")
|
| 92 |
signature_date: Optional[str] = Field(None, description="Date the order was signed.")
|
| 93 |
|
|
@@ -155,6 +157,7 @@ Extract the following details from the provided purchase order document:
|
|
| 155 |
- Your Reference: Reference specified under the "Your Reference" section (if present).
|
| 156 |
- Incoterms: Any applicable incoterms mentioned in the document (e.g., FOB, CIF).
|
| 157 |
- Total Value of the Order: The total monetary value of the purchase order (include currency).
|
|
|
|
| 158 |
- Signature Released By: The name of the person who authorized or released the purchase order.
|
| 159 |
- Signature Date: The date when the order was signed (format: DD/MM/YYYY).
|
| 160 |
"""
|
|
@@ -199,3 +202,12 @@ extract from the document:
|
|
| 199 |
|
| 200 |
invoice_clauses_page_prompt = """
|
| 201 |
extract from the document the clauses """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
from pydantic import BaseModel, Field
|
| 2 |
from typing import Optional,List
|
| 3 |
+
from langchain_core.output_parsers import JsonOutputParser
|
| 4 |
|
| 5 |
class Noc_Residential_TimeSheetInformation(BaseModel):
|
| 6 |
"""Details of a timesheet entry."""
|
|
|
|
| 89 |
your_reference: Optional[str] = Field(None, description="under Your reference title.")
|
| 90 |
incoterms: Optional[str] = Field(None, description="Incoterms applicable to the order.")
|
| 91 |
total_value_of_order: str = Field(..., description="Total value of the purchase order.")
|
| 92 |
+
signed: bool = Field(..., description="Whether the document has been signed or not.")
|
| 93 |
signature_released_by: str = Field(None, description="Name of the person who released the purchase order.")
|
| 94 |
signature_date: Optional[str] = Field(None, description="Date the order was signed.")
|
| 95 |
|
|
|
|
| 157 |
- Your Reference: Reference specified under the "Your Reference" section (if present).
|
| 158 |
- Incoterms: Any applicable incoterms mentioned in the document (e.g., FOB, CIF).
|
| 159 |
- Total Value of the Order: The total monetary value of the purchase order (include currency).
|
| 160 |
+
- signed: Whether the document has been signed or not.
|
| 161 |
- Signature Released By: The name of the person who authorized or released the purchase order.
|
| 162 |
- Signature Date: The date when the order was signed (format: DD/MM/YYYY).
|
| 163 |
"""
|
|
|
|
| 202 |
|
| 203 |
invoice_clauses_page_prompt = """
|
| 204 |
extract from the document the clauses """
|
| 205 |
+
|
| 206 |
+
# CHOOSING PARSER DEPENDING ON THE TYPE OF DOCUMENT
|
| 207 |
+
Noc_Res_timeSheet_parser = JsonOutputParser(pydantic_object=Noc_Residential_TimeSheetInformation)
|
| 208 |
+
Noc_Rot_timeSheet_parser = JsonOutputParser(pydantic_object=Noc_Rotational_TimeSheetInformation)
|
| 209 |
+
Noc_PurchaseOrder_information_parser = JsonOutputParser(pydantic_object=Noc_PurchaseOrderInformation)
|
| 210 |
+
Noc_PurchaseOrder_item1_parser = JsonOutputParser(pydantic_object=Noc_Document_Information)
|
| 211 |
+
Noc_PurchaseOrder_items_parser = JsonOutputParser(pydantic_object=Noc_items)
|
| 212 |
+
Noc_PurchaseOrder_total_parser = JsonOutputParser(pydantic_object=Noc_total)
|
| 213 |
+
Noc_PurchaseOrder_clauses_parser = JsonOutputParser(pydantic_object=Noc_Clauses)
|
functions.py
ADDED
|
@@ -0,0 +1,48 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from langchain.chains import TransformChain
|
| 2 |
+
from langchain_core.messages import HumanMessage
|
| 3 |
+
from langchain_openai import ChatOpenAI
|
| 4 |
+
from langchain import globals
|
| 5 |
+
from langchain_core.runnables import chain
|
| 6 |
+
import base64
|
| 7 |
+
from typing import Dict,List,Union
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def load_image(inputs: dict) -> dict:
|
| 12 |
+
"""Load image from file and encode it as base64."""
|
| 13 |
+
image_path = inputs["image_path"]
|
| 14 |
+
|
| 15 |
+
def encode_image(image_path):
|
| 16 |
+
with open(image_path, "rb") as image_file:
|
| 17 |
+
return base64.b64encode(image_file.read()).decode('utf-8')
|
| 18 |
+
image_base64 = encode_image(image_path)
|
| 19 |
+
return {"image": image_base64}
|
| 20 |
+
|
| 21 |
+
load_image_chain = TransformChain(
|
| 22 |
+
input_variables=["image_path"],
|
| 23 |
+
output_variables=["image"],
|
| 24 |
+
transform=load_image
|
| 25 |
+
)
|
| 26 |
+
|
| 27 |
+
|
| 28 |
+
@chain
|
| 29 |
+
def image_model(inputs: dict) -> Union[str, List[str], dict]:
|
| 30 |
+
"""Invoke model with image and prompt."""
|
| 31 |
+
model = ChatOpenAI(temperature=0.1, model="gpt-4o", max_tokens=1024)
|
| 32 |
+
parser = inputs["parser"]
|
| 33 |
+
msg = model.invoke(
|
| 34 |
+
[HumanMessage(
|
| 35 |
+
content=[
|
| 36 |
+
{"type": "text", "text": inputs["prompt"]},
|
| 37 |
+
{"type": "text", "text": parser.get_format_instructions()},
|
| 38 |
+
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{inputs['image']}"}},
|
| 39 |
+
])]
|
| 40 |
+
)
|
| 41 |
+
return msg.content
|
| 42 |
+
|
| 43 |
+
def get_image_informations(image_path: str,prompt,parser) -> dict:
|
| 44 |
+
vision_chain = load_image_chain | image_model | parser
|
| 45 |
+
return vision_chain.invoke({'image_path': f'{image_path}',
|
| 46 |
+
'prompt': prompt,
|
| 47 |
+
'parser': parser
|
| 48 |
+
})
|