Spaces:
Sleeping
Sleeping
File size: 8,539 Bytes
e85c8bb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 |
import os
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.document_loaders import WebBaseLoader
from langchain_community.document_transformers import BeautifulSoupTransformer
import streamlit as st
from langchain_huggingface import HuggingFaceEndpoint
from langchain.indexes import VectorstoreIndexCreator
from langchain_huggingface.embeddings import HuggingFaceEmbeddings
from langchain_community.vectorstores import FAISS
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain.chains import RetrievalQA
model_id="mistralai/Mistral-7B-Instruct-v0.3"
def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
"""
Returns a language model for HuggingFace inference.
Parameters:
- model_id (str): The ID of the HuggingFace model repository.
- max_new_tokens (int): The maximum number of new tokens to generate.
- temperature (float): The temperature for sampling from the model.
Returns:
- llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
"""
llm = HuggingFaceEndpoint(
repo_id=model_id,
max_new_tokens=max_new_tokens,
temperature=temperature,
token = os.getenv("HF_TOKEN")
)
return llm
st.set_page_config(page_title="Website Information Retirever Agent", page_icon="π€")
st.title("Website Information Retriever Agent")
st.markdown(f"*This is a simple chatbot that uses the HuggingFace transformers library to generate responses to your text input.It uses the model mistralai/Mistral-7B-Instruct-v0.3. You can enter the specific website url and the use the agent to gather information.*")
# Initialize session state for avatars
if "avatars" not in st.session_state:
st.session_state.avatars = {'user': None, 'assistant': None}
# Initialize session state for user text input
if 'user_text' not in st.session_state:
st.session_state.user_text = None
if "sitemap_url" not in st.session_state:
st.session_state.sitemap_url = None
# Initialize session state for model parameters
if "max_response_length" not in st.session_state:
st.session_state.max_response_length = 256
if "system_message" not in st.session_state:
st.session_state.system_message = "friendly AI conversing with a human user"
if "starter_message" not in st.session_state:
st.session_state.starter_message = "Hello, there! How can I help you today?"
# Sidebar for settings
with st.sidebar:
st.header("System Settings")
# AI Settings
st.session_state.system_message = st.text_area(
"System Message", value="You are a friendly AI conversing with a human user."
)
st.session_state.starter_message = st.text_area(
'First AI Message', value="Hello, there! How can I help you today?"
)
# Model Settings
st.session_state.max_response_length = st.number_input(
"Max Response Length", value=256
)
# Avatar Selection
st.markdown("*Select Avatars:*")
col1, col2 = st.columns(2)
with col1:
st.session_state.avatars['assistant'] = st.selectbox(
"AI Avatar", options=["π€", "π¬", "π€"], index=0
)
with col2:
st.session_state.avatars['user'] = st.selectbox(
"User Avatar", options=["π€", "π±ββοΈ", "π¨πΎ", "π©", "π§πΎ"], index=0
)
# Reset Chat History
reset_history = st.button("Reset Chat History")
# Initialize or reset chat history
if "chat_history" not in st.session_state or reset_history:
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
if "sitemap_url" in st.session_state:
sitemap_url = st.text_input("URL to the website", value="")
if sitemap_url:
with st.spinner("Processing..."):
token = os.getenv("HF_TOKEN")
loader = WebBaseLoader([sitemap_url])
html = loader.load()
# Transform
# bs_transformer = BeautifulSoupTransformer()
# docs_transformed = bs_transformer.transform_documents(html,tags_to_extract=["span"])
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=1000,
chunk_overlap=10,
add_start_index=True,
strip_whitespace=True,
separators=["\n\n", "\n", ".", " ", ""],
)
docs_processed = text_splitter.split_documents(html)
# # Create a vector store based on the crawled data
# index = VectorstoreIndexCreator().from_loaders([docs_processed])
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
db = FAISS.from_documents(docs_processed, embeddings)
retriever = db.as_retriever(search_kwargs={"k": 4})
def get_response(system_message, chat_history, user_text,
eos_token_id=['User'], max_new_tokens=256, get_llm_hf_kws={}):
"""
Generates a response from the chatbot model.
Args:
system_message (str): The system message for the conversation.
chat_history (list): The list of previous chat messages.
user_text (str): The user's input text.
model_id (str, optional): The ID of the HuggingFace model to use.
eos_token_id (list, optional): The list of end-of-sentence token IDs.
max_new_tokens (int, optional): The maximum number of new tokens to generate.
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
Returns:
tuple: A tuple containing the generated response and the updated chat history.
"""
# Set up the model
hf = get_llm_hf_inference(max_new_tokens=max_new_tokens, temperature=0.1)
# Create the prompt template
prompt = PromptTemplate.from_template(
(
"[INST] {system_message}"
"\nCurrent Conversation:\n{chat_history}\n\n"
"\nUser: {user_text}.\n [/INST]"
"\nAI:"
)
)
# Make the chain and bind the prompt
chat = prompt | hf.bind(skip_prompt=True) | StrOutputParser(output_key='content')
qa = RetrievalQA.from_chain_type(llm=hf, chain_type="refine", retriever=retriever, return_source_documents=False)
# Generate the response
response = qa.run({"query": user_text})
# response = chat.invoke(input=dict(system_message=system_message, user_text=user_text, chat_history=chat_history))
# response = response.split("AI:")[-1]
# Update the chat history
chat_history.append({'role': 'user', 'content': user_text})
chat_history.append({'role': 'assistant', 'content': response})
return response, chat_history
# Chat interface
if sitemap_url:
chat_interface = st.container(border=True)
with chat_interface:
output_container = st.container()
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
# Display chat messages
with output_container:
# For every message in the history
for message in st.session_state.chat_history:
# Skip the system message
if message['role'] == 'system':
continue
# Display the chat message using the correct avatar
with st.chat_message(message['role'],
avatar=st.session_state['avatars'][message['role']]):
st.markdown(message['content'])
# When the user enter new text:
if st.session_state.user_text:
# Display the user's new message immediately
with st.chat_message("user",
avatar=st.session_state.avatars['user']):
st.markdown(st.session_state.user_text)
# Display a spinner status bar while waiting for the response
with st.chat_message("assistant",
avatar=st.session_state.avatars['assistant']):
with st.spinner("Thinking..."):
# Call the Inference API with the system_prompt, user text, and history
response, st.session_state.chat_history = get_response(
system_message=st.session_state.system_message,
user_text=st.session_state.user_text,
chat_history=st.session_state.chat_history,
max_new_tokens=st.session_state.max_response_length,
)
st.markdown(response)
|