Spaces:
Runtime error
Runtime error
Aman Jain
commited on
Commit
·
c8be163
1
Parent(s):
15df868
Initial commit
Browse files- DATA/Telto_Userguide.pdf +0 -0
- app.py +278 -0
- requirements.txt +10 -0
DATA/Telto_Userguide.pdf
ADDED
Binary file (542 kB). View file
|
|
app.py
ADDED
@@ -0,0 +1,278 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
from transformers import AutoTokenizer
|
3 |
+
from langchain.docstore.document import Document
|
4 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
5 |
+
from langchain.vectorstores import FAISS
|
6 |
+
from langchain_community.embeddings import HuggingFaceEmbeddings
|
7 |
+
from langchain_community.vectorstores.utils import DistanceStrategy
|
8 |
+
from tqdm import tqdm
|
9 |
+
from transformers.agents import Tool, HfApiEngine, ReactJsonAgent
|
10 |
+
from huggingface_hub import InferenceClient
|
11 |
+
import os
|
12 |
+
from langchain_community.document_loaders import DirectoryLoader
|
13 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
14 |
+
from langchain_groq import ChatGroq
|
15 |
+
from groq import Groq
|
16 |
+
from typing import List, Dict
|
17 |
+
from transformers.agents.llm_engine import MessageRole, get_clean_message_list
|
18 |
+
from huggingface_hub import InferenceClient
|
19 |
+
import streamlit as st
|
20 |
+
|
21 |
+
token = os.getenv("HF_TOKEN")
|
22 |
+
os.environ["GROQ_API_KEY"] = "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"
|
23 |
+
groq_api_key = os.getenv("GROQ_API_KEY")
|
24 |
+
|
25 |
+
# model_id="mistralai/Mistral-7B-Instruct-v0.3"
|
26 |
+
loader = DirectoryLoader('C:/Users/Saket_Sambhu/Documents/Agentic_RAG/DATA', glob="**/*.pdf", show_progress=True)
|
27 |
+
docs = loader.load()
|
28 |
+
|
29 |
+
tokenizer = AutoTokenizer.from_pretrained("thenlper/gte-small")
|
30 |
+
text_splitter = RecursiveCharacterTextSplitter.from_huggingface_tokenizer(
|
31 |
+
tokenizer,
|
32 |
+
chunk_size=200,
|
33 |
+
chunk_overlap=20,
|
34 |
+
add_start_index=True,
|
35 |
+
strip_whitespace=True,
|
36 |
+
separators=["\n\n", "\n", ".", " ", ""],
|
37 |
+
)
|
38 |
+
|
39 |
+
# Split documents and remove duplicates
|
40 |
+
|
41 |
+
docs_processed = []
|
42 |
+
unique_texts = {}
|
43 |
+
for doc in tqdm(docs):
|
44 |
+
new_docs = text_splitter.split_documents([doc])
|
45 |
+
for new_doc in new_docs:
|
46 |
+
if new_doc.page_content not in unique_texts:
|
47 |
+
unique_texts[new_doc.page_content] = True
|
48 |
+
docs_processed.append(new_doc)
|
49 |
+
|
50 |
+
|
51 |
+
model_name = "thenlper/gte-small"
|
52 |
+
model_kwargs = {'device': 'cpu'}
|
53 |
+
encode_kwargs = {'normalize_embeddings': False}
|
54 |
+
embedding_model = HuggingFaceEmbeddings(
|
55 |
+
model_name=model_name,
|
56 |
+
model_kwargs=model_kwargs,
|
57 |
+
encode_kwargs=encode_kwargs
|
58 |
+
)
|
59 |
+
|
60 |
+
# Create the vector database
|
61 |
+
vectordb = FAISS.from_documents(
|
62 |
+
documents=docs_processed,
|
63 |
+
embedding=embedding_model,
|
64 |
+
distance_strategy=DistanceStrategy.COSINE,
|
65 |
+
)
|
66 |
+
|
67 |
+
class RetrieverTool(Tool):
|
68 |
+
name = "retriever"
|
69 |
+
description = "Using semantic similarity, retrieves some documents from the knowledge base that have the closest embeddings to the input query."
|
70 |
+
inputs = {
|
71 |
+
"query": {
|
72 |
+
"type": "string",
|
73 |
+
"description": "The query to perform. This should be semantically close to your target documents. Use the affirmative form rather than a question.",
|
74 |
+
}
|
75 |
+
}
|
76 |
+
output_type = "string"
|
77 |
+
|
78 |
+
def __init__(self, vectordb, **kwargs):
|
79 |
+
super().__init__(**kwargs)
|
80 |
+
self.vectordb = vectordb
|
81 |
+
|
82 |
+
def forward(self, query: str) -> str:
|
83 |
+
assert isinstance(query, str), "Your search query must be a string"
|
84 |
+
|
85 |
+
docs = self.vectordb.similarity_search(
|
86 |
+
query,
|
87 |
+
k=7,
|
88 |
+
)
|
89 |
+
|
90 |
+
return "\nRetrieved documents:\n" + "".join(
|
91 |
+
[f"===== Document {str(i)} =====\n" + doc.page_content for i, doc in enumerate(docs)]
|
92 |
+
)
|
93 |
+
|
94 |
+
|
95 |
+
# Create an instance of the RetrieverTool
|
96 |
+
retriever_tool = RetrieverTool(vectordb)
|
97 |
+
|
98 |
+
llm = ChatGroq(
|
99 |
+
model="llama3-70b-8192",
|
100 |
+
temperature=0,
|
101 |
+
max_tokens=2048,
|
102 |
+
)
|
103 |
+
|
104 |
+
openai_role_conversions = {
|
105 |
+
MessageRole.TOOL_RESPONSE: MessageRole.USER,
|
106 |
+
}
|
107 |
+
|
108 |
+
class OpenAIEngine:
|
109 |
+
def __init__(self, model_name="llama-3.3-70b-versatile"):
|
110 |
+
print(groq_api_key)
|
111 |
+
self.model_name = model_name
|
112 |
+
self.client = Groq(
|
113 |
+
api_key=groq_api_key,
|
114 |
+
)
|
115 |
+
|
116 |
+
def __call__(self, messages, stop_sequences=[]):
|
117 |
+
messages = get_clean_message_list(messages, role_conversions=openai_role_conversions)
|
118 |
+
|
119 |
+
response = self.client.chat.completions.create(
|
120 |
+
model=self.model_name,
|
121 |
+
messages=messages,
|
122 |
+
stop=stop_sequences,
|
123 |
+
temperature=0.5,
|
124 |
+
max_tokens=2048
|
125 |
+
)
|
126 |
+
return response.choices[0].message.content
|
127 |
+
|
128 |
+
llm_engine = OpenAIEngine()
|
129 |
+
|
130 |
+
|
131 |
+
# Create the agent
|
132 |
+
agent = ReactJsonAgent(tools=[retriever_tool], llm_engine=llm_engine, max_iterations=4, verbose=2)
|
133 |
+
|
134 |
+
# Function to run the agent
|
135 |
+
def run_agentic_rag(question: str) -> str:
|
136 |
+
enhanced_question = f"""Using the information contained in your knowledge base, which you can access with the 'retriever' tool,
|
137 |
+
give a comprehensive answer to the question below.
|
138 |
+
Respond only to the question asked, response should be concise and relevant to the question.
|
139 |
+
If you cannot find information, do not give up and try calling your retriever again with different arguments!
|
140 |
+
Make sure to have covered the question completely by calling the retriever tool several times with semantically different queries.
|
141 |
+
Your queries should not be questions but affirmative form sentences: e.g. rather than "How do I load a model from the Hub in bf16?", query should be "load a model from the Hub bf16 weights".
|
142 |
+
|
143 |
+
Question:
|
144 |
+
{question}"""
|
145 |
+
|
146 |
+
return agent.run(enhanced_question)
|
147 |
+
|
148 |
+
|
149 |
+
# def get_llm_hf_inference(model_id=model_id, max_new_tokens=128, temperature=0.1):
|
150 |
+
# """
|
151 |
+
# Returns a language model for HuggingFace inference.
|
152 |
+
|
153 |
+
# Parameters:
|
154 |
+
# - model_id (str): The ID of the HuggingFace model repository.
|
155 |
+
# - max_new_tokens (int): The maximum number of new tokens to generate.
|
156 |
+
# - temperature (float): The temperature for sampling from the model.
|
157 |
+
|
158 |
+
# Returns:
|
159 |
+
# - llm (HuggingFaceEndpoint): The language model for HuggingFace inference.
|
160 |
+
# """
|
161 |
+
# llm = HuggingFaceEndpoint(
|
162 |
+
# repo_id=model_id,
|
163 |
+
# max_new_tokens=max_new_tokens,
|
164 |
+
# temperature=temperature,
|
165 |
+
# token = os.getenv("HF_TOKEN")
|
166 |
+
# )
|
167 |
+
# return llm
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
def get_response(chat_history, user_text):
|
175 |
+
"""
|
176 |
+
Generates a response from the chatbot model.
|
177 |
+
|
178 |
+
Args:
|
179 |
+
system_message (str): The system message for the conversation.
|
180 |
+
chat_history (list): The list of previous chat messages.
|
181 |
+
user_text (str): The user's input text.
|
182 |
+
model_id (str, optional): The ID of the HuggingFace model to use.
|
183 |
+
eos_token_id (list, optional): The list of end-of-sentence token IDs.
|
184 |
+
max_new_tokens (int, optional): The maximum number of new tokens to generate.
|
185 |
+
get_llm_hf_kws (dict, optional): Additional keyword arguments for the get_llm_hf function.
|
186 |
+
|
187 |
+
Returns:
|
188 |
+
tuple: A tuple containing the generated response and the updated chat history.
|
189 |
+
"""
|
190 |
+
|
191 |
+
# Update the chat history
|
192 |
+
chat_history.append({'role': 'user', 'content': user_text})
|
193 |
+
chat_history.append({'role': 'assistant', 'content': run_agentic_rag(user_text)})
|
194 |
+
return run_agentic_rag(user_text), chat_history
|
195 |
+
|
196 |
+
|
197 |
+
st.set_page_config(page_title="Hi, I am Telto assistant", page_icon="🤗")
|
198 |
+
st.title("Telto Support")
|
199 |
+
st.markdown(f"*This is telto assistant. For any guidance on how to use Telto, feel free to ask me.*")
|
200 |
+
|
201 |
+
# Initialize session state for avatars
|
202 |
+
if "avatars" not in st.session_state:
|
203 |
+
st.session_state.avatars = {'user': None, 'assistant': None}
|
204 |
+
|
205 |
+
# Initialize session state for user text input
|
206 |
+
if 'user_text' not in st.session_state:
|
207 |
+
st.session_state.user_text = None
|
208 |
+
|
209 |
+
if "system_message" not in st.session_state:
|
210 |
+
st.session_state.system_message = "friendly AI conversing with a human user"
|
211 |
+
|
212 |
+
if "starter_message" not in st.session_state:
|
213 |
+
st.session_state.starter_message = "Hello, there! How can I help you today?"
|
214 |
+
|
215 |
+
# Sidebar for settings
|
216 |
+
with st.sidebar:
|
217 |
+
st.header("System Settings")
|
218 |
+
|
219 |
+
# Avatar Selection
|
220 |
+
st.markdown("*Select Avatars:*")
|
221 |
+
col1, col2 = st.columns(2)
|
222 |
+
with col1:
|
223 |
+
st.session_state.avatars['assistant'] = st.selectbox(
|
224 |
+
"AI Avatar", options=["🤗", "💬", "🤖"], index=0
|
225 |
+
)
|
226 |
+
with col2:
|
227 |
+
st.session_state.avatars['user'] = st.selectbox(
|
228 |
+
"User Avatar", options=["👤", "👱♂️", "👨🏾", "👩", "👧🏾"], index=0
|
229 |
+
)
|
230 |
+
# Reset Chat History
|
231 |
+
reset_history = st.button("Reset Chat History")
|
232 |
+
|
233 |
+
# Initialize or reset chat history
|
234 |
+
if "chat_history" not in st.session_state or reset_history:
|
235 |
+
st.session_state.chat_history = [{"role": "assistant", "content": st.session_state.starter_message}]
|
236 |
+
# Chat interface
|
237 |
+
|
238 |
+
|
239 |
+
chat_interface = st.container(border=True)
|
240 |
+
with chat_interface:
|
241 |
+
output_container = st.container()
|
242 |
+
st.session_state.user_text = st.chat_input(placeholder="Enter your text here.")
|
243 |
+
|
244 |
+
# Display chat messages
|
245 |
+
with output_container:
|
246 |
+
# For every message in the history
|
247 |
+
for message in st.session_state.chat_history:
|
248 |
+
# Skip the system message
|
249 |
+
if message['role'] == 'system':
|
250 |
+
continue
|
251 |
+
|
252 |
+
# Display the chat message using the correct avatar
|
253 |
+
with st.chat_message(message['role'],
|
254 |
+
avatar=st.session_state['avatars'][message['role']]):
|
255 |
+
st.markdown(message['content'])
|
256 |
+
|
257 |
+
# When the user enter new text:
|
258 |
+
if st.session_state.user_text:
|
259 |
+
|
260 |
+
# Display the user's new message immediately
|
261 |
+
with st.chat_message("user",
|
262 |
+
avatar=st.session_state.avatars['user']):
|
263 |
+
st.markdown(st.session_state.user_text)
|
264 |
+
|
265 |
+
# Display a spinner status bar while waiting for the response
|
266 |
+
with st.chat_message("assistant",
|
267 |
+
avatar=st.session_state.avatars['assistant']):
|
268 |
+
|
269 |
+
with st.spinner("Thinking..."):
|
270 |
+
# Call the Inference API with the system_prompt, user text, and history
|
271 |
+
|
272 |
+
|
273 |
+
response, st.session_state.chat_history = get_response(
|
274 |
+
user_text=st.session_state.user_text,
|
275 |
+
chat_history=st.session_state.chat_history,
|
276 |
+
)
|
277 |
+
st.markdown(response)
|
278 |
+
|
requirements.txt
ADDED
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
transformers
|
2 |
+
langchain
|
3 |
+
langchain-community
|
4 |
+
sentence-transformers
|
5 |
+
faiss-cpu
|
6 |
+
groq
|
7 |
+
langchain-groq
|
8 |
+
unstructured
|
9 |
+
"unstructured[pdf]"
|
10 |
+
langchain-huggingface
|