amasood commited on
Commit
aa259ec
·
verified ·
1 Parent(s): 881b92f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +5 -5
app.py CHANGED
@@ -18,11 +18,11 @@ QUESTIONS_MODEL = "tiiuae/falcon-rw-1b"
18
  KEYWORDS_MODEL = "google/flan-t5-small"
19
 
20
  # Function to get LangChain LLM
21
- def get_llm(model_id):
22
  return HuggingFaceHub(
23
  repo_id=model_id,
24
  model_kwargs={"temperature": 0.5, "max_new_tokens": 150},
25
- task="text2text-generation",
26
  huggingfacehub_api_token=HUGGINGFACE_API_TOKEN
27
  )
28
 
@@ -40,17 +40,17 @@ if st.button("Run Multi-LLM Analysis"):
40
 
41
  # Step 1: Summary
42
  summary_prompt = f"Provide a short summary about: {topic}"
43
- summary_model = get_llm(SUMMARY_MODEL)
44
  summary = summary_model.predict(summary_prompt)
45
 
46
  # Step 2: Research Questions
47
  questions_prompt = f"Give three research questions about: {topic}"
48
- questions_model = get_llm(QUESTIONS_MODEL)
49
  questions = questions_model.predict(questions_prompt)
50
 
51
  # Step 3: Keywords
52
  keywords_prompt = f"List five keywords related to: {topic}"
53
- keywords_model = get_llm(KEYWORDS_MODEL)
54
  keywords = keywords_model.predict(keywords_prompt)
55
 
56
  # Display results
 
18
  KEYWORDS_MODEL = "google/flan-t5-small"
19
 
20
  # Function to get LangChain LLM
21
+ def get_llm(model_id, task):
22
  return HuggingFaceHub(
23
  repo_id=model_id,
24
  model_kwargs={"temperature": 0.5, "max_new_tokens": 150},
25
+ task=task, # Changed to a generic task for text generation
26
  huggingfacehub_api_token=HUGGINGFACE_API_TOKEN
27
  )
28
 
 
40
 
41
  # Step 1: Summary
42
  summary_prompt = f"Provide a short summary about: {topic}"
43
+ summary_model = get_llm(SUMMARY_MODEL, task="text-generation") # Corrected task
44
  summary = summary_model.predict(summary_prompt)
45
 
46
  # Step 2: Research Questions
47
  questions_prompt = f"Give three research questions about: {topic}"
48
+ questions_model = get_llm(QUESTIONS_MODEL, task="text-generation") # Corrected task
49
  questions = questions_model.predict(questions_prompt)
50
 
51
  # Step 3: Keywords
52
  keywords_prompt = f"List five keywords related to: {topic}"
53
+ keywords_model = get_llm(KEYWORDS_MODEL, task="text-generation") # Corrected task
54
  keywords = keywords_model.predict(keywords_prompt)
55
 
56
  # Display results