|
try: |
|
import detectron2 |
|
except: |
|
import os |
|
os.system('pip install git+https://github.com/facebookresearch/detectron2.git') |
|
|
|
from matplotlib.pyplot import axis |
|
import gradio as gr |
|
import requests |
|
import numpy as np |
|
from torch import nn |
|
import requests |
|
|
|
import torch |
|
|
|
from detectron2 import model_zoo |
|
from detectron2.engine import DefaultPredictor |
|
from detectron2.config import get_cfg |
|
from detectron2.utils.visualizer import Visualizer |
|
from detectron2.data import MetadataCatalog |
|
|
|
|
|
model_path = "https://huggingface.co/dbmdz/detectron2-model/resolve/main/model_final.pth" |
|
|
|
cfg = get_cfg() |
|
cfg.merge_from_file("./configs/detectron2/faster_rcnn_R_50_FPN_3x.yaml") |
|
cfg.MODEL.ROI_HEADS.SCORE_THRESH_TEST = 0.8 |
|
cfg.MODEL.ROI_HEADS.NUM_CLASSES = 2 |
|
cfg.MODEL.WEIGHTS = model_path |
|
|
|
my_metadata = MetadataCatalog.get("dbmdz_coco_all") |
|
my_metadata.thing_classes = ["Illumination", "Illustration"] |
|
|
|
if not torch.cuda.is_available(): |
|
cfg.MODEL.DEVICE='cpu' |
|
|
|
predictor = DefaultPredictor(cfg) |
|
|
|
def inference(image): |
|
print(image.height) |
|
|
|
height = image.height |
|
|
|
img = np.array(image.resize((500, height))) |
|
outputs = predictor(img) |
|
|
|
v = Visualizer(img, my_metadata, scale=1.2) |
|
out = v.draw_instance_predictions(outputs["instances"].to("cpu")) |
|
|
|
return out.get_image() |
|
|
|
title = "DBMDZ Detectron2 Model Demo" |
|
description = "This demo introduces an interactive playground for our trained Detectron2 model. <br>The model was trained on image from digitized books to detect Illustration or Illumination segments on a given page. Classification threshold is set to 0.8." |
|
article = '<p>Detectron model is available from our repository <a href="">here</a> on the Hugging Face Model Hub.</p>' |
|
|
|
gr.Interface( |
|
inference, |
|
[gr.inputs.Image(type="pil", label="Input")], |
|
gr.outputs.Image(type="numpy", label="Output"), |
|
title=title, |
|
description=description, |
|
article=article, |
|
examples=[]).launch() |
|
|