Spaces:
Running
Running
import from moon-landing codebase
Browse files
README.md
CHANGED
|
@@ -3,31 +3,89 @@ title: README
|
|
| 3 |
emoji: 🐠
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
-
sdk:
|
| 7 |
-
app_file: app.py
|
| 8 |
pinned: false
|
| 9 |
---
|
| 10 |
|
| 11 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
|
| 13 |
-
|
| 14 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
emoji: 🐠
|
| 4 |
colorFrom: pink
|
| 5 |
colorTo: purple
|
| 6 |
+
sdk: static
|
|
|
|
| 7 |
pinned: false
|
| 8 |
---
|
| 9 |
|
| 10 |
+
<p class="lg:col-span-3">
|
| 11 |
+
Hugging Face is working with Amazon Web Services to make it easier than
|
| 12 |
+
ever for startups and enterprises to <strong
|
| 13 |
+
>train and deploy Hugging Face models in Amazon SageMaker</strong
|
| 14 |
+
>.
|
| 15 |
+
</p>
|
| 16 |
|
| 17 |
+
<a
|
| 18 |
+
href="https://huggingface.co/blog/the-partnership-amazon-sagemaker-and-hugging-face"
|
| 19 |
+
class="block overflow-hidden group"
|
| 20 |
+
>
|
| 21 |
+
<div
|
| 22 |
+
class="w-full h-40 object-cover mb-2 bg-indigo-100 rounded-lg flex items-center justify-center dark:bg-gray-900 dark:group-hover:bg-gray-850"
|
| 23 |
+
>
|
| 24 |
+
<img
|
| 25 |
+
alt=""
|
| 26 |
+
src="/front/assets/promo/amazon_sagemaker_x_huggingface.png"
|
| 27 |
+
class="w-40"
|
| 28 |
+
/>
|
| 29 |
+
</div>
|
| 30 |
+
<div class="underline">Read announcement blog post</div>
|
| 31 |
+
</a>
|
| 32 |
+
<a href="https://youtu.be/ok3hetb42gU" class="block overflow-hidden">
|
| 33 |
+
<img
|
| 34 |
+
alt=""
|
| 35 |
+
src="/front/assets/promo/amazon_walkthrough_thumbnail.png"
|
| 36 |
+
class="w-full h-40 object-cover mb-2 bg-gray-300 rounded-lg"
|
| 37 |
+
/>
|
| 38 |
+
<div class="underline">Video Walkthrough with Philipp Schmid</div>
|
| 39 |
+
</a>
|
| 40 |
+
<a
|
| 41 |
+
href="https://huggingface.co/docs/sagemaker"
|
| 42 |
+
class="block overflow-hidden group"
|
| 43 |
+
>
|
| 44 |
+
<div
|
| 45 |
+
class="w-full h-40 object-cover mb-2 bg-gray-900 group-hover:bg-gray-850 rounded-lg flex items-start justify-start"
|
| 46 |
+
>
|
| 47 |
+
<img
|
| 48 |
+
alt=""
|
| 49 |
+
src="/front/assets/promo/amazon_documentation.png"
|
| 50 |
+
class="w-44 p-4"
|
| 51 |
+
/>
|
| 52 |
+
</div>
|
| 53 |
+
<div class="underline">Documentation: Hugging Face in SageMaker</div>
|
| 54 |
+
</a>
|
| 55 |
|
| 56 |
+
<div class="lg:col-span-3">
|
| 57 |
+
<p class="mb-2">
|
| 58 |
+
To train Hugging Face models in Amazon SageMaker, you can use the
|
| 59 |
+
Hugging Face Deep Learning Contrainers (DLCs) and the Hugging Face
|
| 60 |
+
support in the SageMaker Python SDK.
|
| 61 |
+
</p>
|
| 62 |
+
<p class="mb-2">
|
| 63 |
+
The DLCs are fully integrated with the SageMaker distributed training
|
| 64 |
+
libraries to train models more quickly using the latest generation of
|
| 65 |
+
accelerated computing instances available on Amazon EC2. With the
|
| 66 |
+
SageMaker Python SDK, you can start training with just a single line of
|
| 67 |
+
code, enabling your teams to move from idea to production more quickly.
|
| 68 |
+
</p>
|
| 69 |
+
<p class="mb-2">
|
| 70 |
+
To deploy Hugging Face models in Amazon SageMaker, you can use the
|
| 71 |
+
Hugging Face Deep Learning Containers with the new Hugging Face
|
| 72 |
+
Inference Toolkit.
|
| 73 |
+
</p>
|
| 74 |
+
<p class="mb-2">
|
| 75 |
+
With the new Hugging Face Inference DLCs, deploy your trained models for
|
| 76 |
+
inference with just one more line of code, or select any of the 10,000+
|
| 77 |
+
models publicly available on the 🤗 Hub, and deploy them with Amazon
|
| 78 |
+
SageMaker, to easily create production-ready endpoints that scale
|
| 79 |
+
seamlessly, with built-in monitoring and enterprise-level security.
|
| 80 |
+
</p>
|
| 81 |
+
<p>
|
| 82 |
+
More information: <a
|
| 83 |
+
href="https://aws.amazon.com/blogs/machine-learning/aws-and-hugging-face-collaborate-to-simplify-and-accelerate-adoption-of-natural-language-processing-models/"
|
| 84 |
+
class="underline">AWS blog post</a
|
| 85 |
+
>,
|
| 86 |
+
<a
|
| 87 |
+
href="https://discuss.huggingface.co/c/sagemaker/17"
|
| 88 |
+
class="underline">Community Forum</a
|
| 89 |
+
>
|
| 90 |
+
</p>
|
| 91 |
+
</div>
|