mahdicv commited on
Commit
f1b7ce9
·
1 Parent(s): 94b2d6e

initial commit to add working code

Browse files
Files changed (5) hide show
  1. README.md +7 -7
  2. app.py +102 -50
  3. gateway.py +69 -0
  4. requirements.txt +1 -1
  5. utils.py +12 -0
README.md CHANGED
@@ -1,14 +1,14 @@
1
  ---
2
- title: Gpt Oss 120b Chatbot
3
- emoji: 💬
4
- colorFrom: yellow
5
- colorTo: purple
6
  sdk: gradio
7
- sdk_version: 5.0.1
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
- short_description: 'Alpha chatbot using OpenAI'' gpt-oss-120b released on day 0. '
12
  ---
13
 
14
- An example chatbot using [Gradio](https://gradio.app), [`huggingface_hub`](https://huggingface.co/docs/huggingface_hub/v0.22.2/en/index), and the [Hugging Face Inference API](https://huggingface.co/docs/api-inference/index).
 
1
  ---
2
+ title: Openai Amd Modelx Internal
3
+ emoji: 💻
4
+ colorFrom: red
5
+ colorTo: pink
6
  sdk: gradio
7
+ sdk_version: 5.36.2
8
  app_file: app.py
9
  pinned: false
10
  license: apache-2.0
11
+ short_description: 'internal repo to test '
12
  ---
13
 
14
+ Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
app.py CHANGED
@@ -1,64 +1,116 @@
1
- import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
 
39
- response += token
40
- yield response
 
 
 
 
 
 
 
 
 
 
41
 
 
 
42
 
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48
  additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
 
 
 
 
 
 
 
60
  )
61
-
62
-
63
  if __name__ == "__main__":
64
- demo.launch()
 
 
 
1
+ import os, re, logging, gradio as gr
2
+ from openai import OpenAI
3
+ from gateway import request_generation
4
+ from utils import LATEX_DELIMS
5
+
6
+ openai_api_key = os.getenv("API_KEY")
7
+ openai_api_base = os.getenv("API_ENDPOINT")
8
+ MODEL = os.getenv("MODEL_NAME", "")
9
+ client = OpenAI(api_key=openai_api_key, base_url=openai_api_base)
10
+ MAX_NEW_TOKENS = int(os.getenv("MAX_NEW_TOKENS", 1024))
11
+ CONCURRENCY_LIMIT = int(os.getenv("CONCURRENCY_LIMIT", 20))
12
+ QUEUE_SIZE = int(os.getenv("QUEUE_SIZE", CONCURRENCY_LIMIT * 4))
13
 
14
+ logging.basicConfig(level=logging.INFO)
 
 
 
15
 
16
+ def format_analysis_response(text):
17
+ m = re.search(r"analysis(.*?)assistantfinal", text, re.DOTALL)
18
+ if m:
19
+ reasoning = m.group(1).strip()
20
+ response = text.split("assistantfinal", 1)[-1].strip()
21
+ return (
22
+ f"**🤔 Analysis:**\n\n*{reasoning}*\n\n---\n\n"
23
+ f"**💬 Response:**\n\n{response}"
24
+ )
25
+ return text.strip()
26
 
27
+ def generate(message, history,
28
+ system_prompt, temperature,
29
+ frequency_penalty, presence_penalty,
30
+ max_new_tokens):
 
 
 
 
 
31
 
32
+ if not message.strip():
33
+ yield "Please enter a prompt."
34
+ return
 
 
35
 
36
+ msgs = []
37
+ for h in history:
38
+ if isinstance(h, dict):
39
+ msgs.append(h)
40
+ elif isinstance(h, (list, tuple)) and len(h) == 2:
41
+ u, a = h
42
+ if u: msgs.append({"role": "user", "content": u})
43
+ if a: msgs.append({"role": "assistant", "content": a})
44
 
45
+ logging.info(f"[User] {message}")
46
+ logging.info(f"[System] {system_prompt} | Temp={temperature}")
47
 
48
+ collected, buffer = "", ""
49
+ yielded_once = False
 
 
 
 
 
 
50
 
51
+ try:
52
+ for delta in request_generation(
53
+ api_key=openai_api_key, api_base=openai_api_base,
54
+ message=message, system_prompt=system_prompt,
55
+ model_name=MODEL, chat_history=msgs,
56
+ temperature=temperature,
57
+ frequency_penalty=frequency_penalty,
58
+ presence_penalty=presence_penalty,
59
+ max_new_tokens=max_new_tokens,
60
+ ):
61
+ if not delta:
62
+ continue
63
 
64
+ collected += delta
65
+ buffer += delta
66
 
67
+ if not yielded_once:
68
+ yield delta
69
+ buffer = ""
70
+ yielded_once = True
71
+ continue
72
+
73
+ if "\n" in buffer or len(buffer) > 150:
74
+ yield collected
75
+ buffer = ""
76
+
77
+ final = format_analysis_response(collected)
78
+ if final.count("$") % 2:
79
+ final += "$"
80
+ yield final
81
+
82
+ except Exception as e:
83
+ logging.exception("Stream failed")
84
+ yield f"❌ Error: {e}"
85
+
86
+ chatbot_ui = gr.ChatInterface(
87
+ fn=generate,
88
+ type="messages",
89
+ chatbot=gr.Chatbot(
90
+ label="OSS vLLM Chatbot",
91
+ type="messages",
92
+ scale=2,
93
+ height=600,
94
+ latex_delimiters=LATEX_DELIMS,
95
+ ),
96
+ stop_btn=True,
97
  additional_inputs=[
98
+ gr.Textbox(label="System prompt", value="You are a helpful assistant.", lines=2),
99
+ gr.Slider(label="Temperature", minimum=0.0, maximum=1.0, step=0.1, value=0.7),
 
 
 
 
 
 
 
 
100
  ],
101
+ examples=[
102
+ ["Explain the difference between supervised and unsupervised learning."],
103
+ ["Summarize the plot of Inception in two sentences."],
104
+ ["Show me the LaTeX for the quadratic formula."],
105
+ ["What are advantages of AMD Instinct MI300X GPU?"],
106
+ ["Derive the gradient of softmax cross-entropy loss."],
107
+ ["Explain why ∂/∂x xⁿ = n·xⁿ⁻¹ holds."],
108
+ ],
109
+ # title="Open-source GPT-OSS-120B on AMD MI300X",
110
+ title=" GPT-OSS-120B on AMD MI300X",
111
+ description="This Space is an Alpha release that demonstrates gpt-oss-120b model running on AMD MI300 infrastructure. The space is built with Apache 2.0 License.",
112
  )
 
 
113
  if __name__ == "__main__":
114
+ chatbot_ui.queue(max_size=QUEUE_SIZE,
115
+ default_concurrency_limit=CONCURRENCY_LIMIT).launch()
116
+
gateway.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import logging
2
+ from openai import OpenAI
3
+ from typing import List, Generator, Optional
4
+
5
+ logging.basicConfig(level=logging.INFO)
6
+
7
+ def request_generation(
8
+ api_key: str,
9
+ api_base: str,
10
+ message: str,
11
+ system_prompt: str,
12
+ model_name: str,
13
+ chat_history: Optional[List[dict]] = None,
14
+ temperature: float = 0.3,
15
+ frequency_penalty: float = 0.0,
16
+ presence_penalty: float = 0.0,
17
+ max_new_tokens: int = 1024,
18
+ tools: Optional[List[dict]] = None,
19
+ tool_choice: Optional[str] = None,
20
+ ) -> Generator[str, None, None]:
21
+ """
22
+ Sends a streaming chat request to an OpenAI-compatible backend using the official OpenAI client.
23
+ Buffers output to improve LaTeX rendering.
24
+ """
25
+ client = OpenAI(api_key=api_key, base_url=api_base)
26
+
27
+ messages = [{"role": "system", "content": system_prompt}]
28
+ if chat_history:
29
+ messages.extend(chat_history)
30
+ messages.append({"role": "user", "content": message})
31
+
32
+ request_args = {
33
+ "model": model_name,
34
+ "messages": messages,
35
+ "temperature": temperature,
36
+ "frequency_penalty": frequency_penalty,
37
+ "presence_penalty": presence_penalty,
38
+ "max_tokens": max_new_tokens,
39
+ "stream": True,
40
+ }
41
+
42
+ if tools:
43
+ request_args["tools"] = tools
44
+ if tool_choice:
45
+ request_args["tool_choice"] = tool_choice
46
+
47
+ logging.info(f"[Gateway] Request to {api_base} | Model: {model_name}")
48
+
49
+ try:
50
+ stream = client.chat.completions.create(**request_args)
51
+
52
+ collected = ""
53
+ buffer = ""
54
+
55
+ for chunk in stream:
56
+ delta = chunk.choices[0].delta.content or ""
57
+ collected += delta
58
+ buffer += delta
59
+
60
+ if "\n" in buffer or len(buffer) > 150:
61
+ yield buffer
62
+ buffer = ""
63
+
64
+ if buffer:
65
+ yield buffer
66
+
67
+ except Exception as e:
68
+ logging.exception("[Gateway] Streaming failed")
69
+ yield f"Error: {e}"
requirements.txt CHANGED
@@ -1 +1 @@
1
- huggingface_hub==0.25.2
 
1
+ openai
utils.py ADDED
@@ -0,0 +1,12 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+
2
+ # ----------------------------------------------------------------------
3
+ # KaTeX delimiter config for Gradio
4
+ # ----------------------------------------------------------------------
5
+
6
+ LATEX_DELIMS = [
7
+ {"left": "$$", "right": "$$", "display": True},
8
+ {"left": "$", "right": "$", "display": False},
9
+ {"left": "\\[", "right": "\\]", "display": True},
10
+ {"left": "\\(", "right": "\\)", "display": False},
11
+ ]
12
+