File size: 4,540 Bytes
0d87b57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import os
import logging
import gradio as gr
from typing import Iterator
from gateway import request_generation

# Setup logging
logging.basicConfig(level=logging.INFO)

# Validate environment variables
CLOUD_GATEWAY_API = os.getenv("API_ENDPOINT")
if not CLOUD_GATEWAY_API:
    raise EnvironmentError("API_ENDPOINT is not set.")

MODEL_NAME: str = os.getenv("MODEL_NAME")
if not MODEL_NAME:
    raise EnvironmentError("MODEL_NAME is not set.")

# Get API Key
API_KEY = os.getenv("API_KEY")
if not API_KEY:  # simple check to validate API Key
    raise Exception("API Key not valid.")

# Create a header, avoid declaring multiple times
HEADER = {"x-api-key": f"{API_KEY}"}

def generate(
    message: str,
    chat_history: list,
    system_prompt: str,
    temperature: float = 0.6,
    frequency_penalty: float = 0.0,
    presence_penalty: float = 0.0,
) -> Iterator[str]:
    """Send a request to backend, fetch the streaming responses and emit to the UI.

    Args:
        message (str): input message from the user
        chat_history (list[tuple[str, str]]): entire chat history of the session
        system_prompt (str): system prompt
        temperature (float, optional): the value used to module the next token probabilities. Defaults to 0.6.
        top_p (float, optional): if set to float<1, only the smallest set of most probable tokens with probabilities
                                    that add up to top_p or higher are kept for generation. Defaults to 0.9.
        top_k (int, optional): the number of highest probability vocabulary tokens to keep for top-k-filtering.
                                Defaults to 50.
        repetition_penalty (float, optional): the parameter for repetition penalty. 1.0 means no penalty.
                                Defaults to 1.2.

    Yields:
        Iterator[str]: Streaming responses to the UI
    """
    # sample method to yield responses from the llm model
    outputs = []
    for text in request_generation(
        header=HEADER,
        message=message,
        system_prompt=system_prompt,
        temperature=temperature,
        presence_penalty=presence_penalty,
        frequency_penalty=frequency_penalty,
        cloud_gateway_api=CLOUD_GATEWAY_API,
        model_name=MODEL_NAME,
    ):
        outputs.append(text)
        yield "".join(outputs)


description = """
This Space is an Alpha release that demonstrates the [Qwen3-30B-A3B](https://huggingface.co/Qwen/Qwen3-30B-A3B) model running on AMD MI300 infrastructure. The space is built with Qwen 3 [License](https://huggingface.co/Qwen/Qwen3-30B-A3B/blob/main/LICENSE). Feel free to play with it!
"""

demo = gr.ChatInterface(
    fn=generate,
    type="messages",
    chatbot=gr.Chatbot(
        type="messages",
        scale=2,
        allow_tags=True,
    ),
    stop_btn=None,
    additional_inputs=[
        gr.Textbox(
            label="System prompt",
            value="You are a highly capable AI assistant. Provide accurate, concise, and fact-based responses that are directly relevant to the user's query. Avoid speculation, ensure logical consistency, and maintain clarity in longer outputs. Keep answers well-structured and under 1200 tokens unless explicitly requested otherwise.",
            lines=3,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0.1,
            maximum=4.0,
            step=0.1,
            value=0.3,
        ),
        gr.Slider(
            label="Frequency penalty",
            minimum=-2.0,
            maximum=2.0,
            step=0.1,
            value=0.0,
        ),
        gr.Slider(
            label="Presence penalty",
            minimum=-2.0,
            maximum=2.0,
            step=0.1,
            value=0.0,
        ),
    ],
    examples=[
        ["Plan a three-day trip to Washington DC for Cherry Blossom Festival."],
        [
            "Compose a short, joyful musical piece for kids celebrating spring sunshine and blossom."
        ],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["Explain the plot of Cinderella in a sentence."],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'."],
    ],
    cache_examples=False,
    title="Qwen3-30B-A3B",
    description=description,
)


if __name__ == "__main__":
    demo.queue(
        max_size=int(os.getenv("QUEUE")),
        default_concurrency_limit=int(os.getenv("CONCURRENCY_LIMIT")),
    ).launch()