Delete app.py
Browse files
app.py
DELETED
@@ -1,134 +0,0 @@
|
|
1 |
-
import streamlit as st
|
2 |
-
import pandas as pd
|
3 |
-
import tempfile
|
4 |
-
import os
|
5 |
-
import json
|
6 |
-
from pathlib import Path
|
7 |
-
|
8 |
-
from langchain.schema import Document
|
9 |
-
#from langchain.document_loaders import Document
|
10 |
-
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
11 |
-
from langchain.embeddings import HuggingFaceEmbeddings
|
12 |
-
from langchain.vectorstores import FAISS
|
13 |
-
from langchain.chains import RetrievalQAWithSourcesChain
|
14 |
-
from langchain import HuggingFacePipeline
|
15 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM
|
16 |
-
|
17 |
-
USER_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/9904d9a0d445ab0488cf7395cb863cce7621d897/USER_AVATAR.png"
|
18 |
-
BOT_AVATAR = "https://raw.githubusercontent.com/achilela/vila_fofoka_analysis/991f4c6e4e1dc7a8e24876ca5aae5228bcdb4dba/Ataliba_Avatar.jpg"
|
19 |
-
CHAT_HISTORY_FILE = Path("chat_memory.json")
|
20 |
-
|
21 |
-
def load_chat_history():
|
22 |
-
if CHAT_HISTORY_FILE.exists():
|
23 |
-
with open(CHAT_HISTORY_FILE, "r") as f:
|
24 |
-
return json.load(f)
|
25 |
-
return []
|
26 |
-
|
27 |
-
def save_chat_history(history):
|
28 |
-
with open(CHAT_HISTORY_FILE, "w") as f:
|
29 |
-
json.dump(history, f)
|
30 |
-
|
31 |
-
def preprocess_excel(file_path: str) -> pd.DataFrame:
|
32 |
-
df_raw = pd.read_excel(file_path, sheet_name='Data Base', header=None)
|
33 |
-
df = df_raw.iloc[4:].copy()
|
34 |
-
df.columns = df.iloc[0]
|
35 |
-
df = df[1:]
|
36 |
-
df.dropna(how='all', inplace=True)
|
37 |
-
df.dropna(axis=1, how='all', inplace=True)
|
38 |
-
df.reset_index(drop=True, inplace=True)
|
39 |
-
df.columns = df.columns.astype(str)
|
40 |
-
return df
|
41 |
-
|
42 |
-
def build_vectorstore_from_structured_records(df: pd.DataFrame):
|
43 |
-
df.fillna("", inplace=True)
|
44 |
-
records = []
|
45 |
-
for i, row in df.iterrows():
|
46 |
-
item_class = str(row.get("Item Class", "")).strip()
|
47 |
-
job_done = str(row.get("Job Done", "")).strip()
|
48 |
-
backlog = str(row.get("Backlog?", "")).strip()
|
49 |
-
days = str(row.get("Days in Backlog", "")).strip()
|
50 |
-
if not any([item_class, job_done, backlog, days]):
|
51 |
-
continue
|
52 |
-
sentence = f"Item Class {item_class} has status {job_done}, is in {backlog} backlog, and has {days} days."
|
53 |
-
records.append(Document(page_content=sentence, metadata={"source": f"Row {i+1}"}))
|
54 |
-
|
55 |
-
splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=150)
|
56 |
-
split_docs = splitter.split_documents(records)
|
57 |
-
|
58 |
-
embeddings = HuggingFaceEmbeddings(
|
59 |
-
model_name="sentence-transformers/all-MiniLM-l6-v2",
|
60 |
-
model_kwargs={"device": "cpu"},
|
61 |
-
encode_kwargs={"normalize_embeddings": False}
|
62 |
-
)
|
63 |
-
vectorstore = FAISS.from_documents(split_docs, embeddings)
|
64 |
-
return vectorstore
|
65 |
-
|
66 |
-
def create_qa_pipeline(vectorstore):
|
67 |
-
model_id = "google/flan-t5-base"
|
68 |
-
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
69 |
-
model = AutoModelForSeq2SeqLM.from_pretrained(model_id)
|
70 |
-
gen_pipeline = pipeline("text2text-generation", model=model, tokenizer=tokenizer, max_length=512)
|
71 |
-
llm = HuggingFacePipeline(pipeline=gen_pipeline)
|
72 |
-
retriever = vectorstore.as_retriever()
|
73 |
-
qa = RetrievalQAWithSourcesChain.from_llm(llm=llm, retriever=retriever)
|
74 |
-
return qa
|
75 |
-
|
76 |
-
st.set_page_config(page_title="Excel-Aware RAG Chatbot", layout="wide")
|
77 |
-
st.title("π Excel-Aware RAG Chatbot (Structured QA)")
|
78 |
-
|
79 |
-
with st.sidebar:
|
80 |
-
uploaded_file = st.file_uploader("Upload your Excel file (.xlsx or .xlsm with 'Data Base' sheet)", type=["xlsx", "xlsm"])
|
81 |
-
if st.button("ποΈ Clear Chat History"):
|
82 |
-
st.session_state.chat_history = []
|
83 |
-
if CHAT_HISTORY_FILE.exists():
|
84 |
-
CHAT_HISTORY_FILE.unlink()
|
85 |
-
st.rerun()
|
86 |
-
|
87 |
-
if "chat_history" not in st.session_state:
|
88 |
-
st.session_state.chat_history = load_chat_history()
|
89 |
-
|
90 |
-
if uploaded_file is not None:
|
91 |
-
with st.spinner("Processing and indexing your Excel sheet..."):
|
92 |
-
with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsm") as tmp_file:
|
93 |
-
tmp_file.write(uploaded_file.read())
|
94 |
-
tmp_path = tmp_file.name
|
95 |
-
|
96 |
-
try:
|
97 |
-
df = preprocess_excel(tmp_path)
|
98 |
-
vectorstore = build_vectorstore_from_structured_records(df)
|
99 |
-
qa = create_qa_pipeline(vectorstore)
|
100 |
-
st.success("β
File processed and chatbot ready! Ask your questions below.")
|
101 |
-
except Exception as e:
|
102 |
-
st.error(f"β Error processing file: {e}")
|
103 |
-
finally:
|
104 |
-
os.remove(tmp_path)
|
105 |
-
|
106 |
-
for message in st.session_state.chat_history:
|
107 |
-
st.chat_message(message["role"], avatar=USER_AVATAR if message["role"] == "user" else BOT_AVATAR).markdown(message["content"])
|
108 |
-
|
109 |
-
user_prompt = st.chat_input("Ask about item classes, backlog, or status...")
|
110 |
-
|
111 |
-
if user_prompt:
|
112 |
-
st.session_state.chat_history.append({"role": "user", "content": user_prompt})
|
113 |
-
st.chat_message("user", avatar=USER_AVATAR).markdown(user_prompt)
|
114 |
-
|
115 |
-
with st.chat_message("assistant", avatar=BOT_AVATAR):
|
116 |
-
with st.spinner("Thinking..."):
|
117 |
-
try:
|
118 |
-
response = qa.invoke({"question": user_prompt})
|
119 |
-
final_response = response['answer']
|
120 |
-
sources = response.get('sources', '')
|
121 |
-
placeholder = st.empty()
|
122 |
-
streamed = ""
|
123 |
-
for word in final_response.split():
|
124 |
-
streamed += word + " "
|
125 |
-
placeholder.markdown(streamed + "β")
|
126 |
-
placeholder.markdown(f"**{final_response.strip()}**")
|
127 |
-
if sources:
|
128 |
-
st.markdown(f"<sub>π <i>{sources}</i></sub>", unsafe_allow_html=True)
|
129 |
-
st.session_state.chat_history.append({"role": "assistant", "content": final_response})
|
130 |
-
save_chat_history(st.session_state.chat_history)
|
131 |
-
except Exception as e:
|
132 |
-
st.error(f"β Error: {e}")
|
133 |
-
else:
|
134 |
-
st.info("Upload a file on the left to get started.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|