import streamlit as st import torch import os import time import tempfile from threading import Thread from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer from langchain_community.document_loaders import PyPDFLoader, TextLoader from langchain_text_splitters import RecursiveCharacterTextSplitter from langchain_community.embeddings import HuggingFaceEmbeddings from langchain.vectorstores import FAISS from langchain.retrievers import BM25Retriever, EnsembleRetriever from langchain.schema import Document from langchain.docstore.document import Document as LangchainDocument # --- HF Token --- HF_TOKEN = st.secrets["HF_TOKEN"] # --- Page Config --- st.set_page_config(page_title="DigiTwin RAG", page_icon="๐Ÿ“‚", layout="centered") st.title("๐Ÿ“‚ DigiTs the Twin") # --- Sidebar --- with st.sidebar: st.header("๐Ÿ“„ Upload Knowledge Files") uploaded_files = st.file_uploader("Upload PDFs or .txt files", accept_multiple_files=True, type=["pdf", "txt"]) hybrid_toggle = st.checkbox("๐Ÿ”€ Enable Hybrid Search", value=True) clear_chat = st.button("๐Ÿงน Clear Chat History") # --- Session State --- if "messages" not in st.session_state or clear_chat: st.session_state.messages = [] # --- Load Model + Tokenizer --- @st.cache_resource def load_model(): model_id = "tiiuae/falcon-7b-instruct" tokenizer = AutoTokenizer.from_pretrained(model_id, token=HF_TOKEN) model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto", token=HF_TOKEN) return tokenizer, model tokenizer, model = load_model() # --- Process Documents --- def process_documents(files): documents = [] for file in files: suffix = ".pdf" if file.name.endswith(".pdf") else ".txt" with tempfile.NamedTemporaryFile(delete=False, suffix=suffix) as tmp_file: tmp_file.write(file.read()) tmp_file_path = tmp_file.name if suffix == ".pdf": loader = PyPDFLoader(tmp_file_path) else: loader = TextLoader(tmp_file_path) docs = loader.load() documents.extend(docs) return documents def chunk_documents(documents): splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=50) return splitter.split_documents(documents) # --- Build Hybrid Retriever --- def build_retrievers(chunks): embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2") faiss_vectorstore = FAISS.from_documents(chunks, embeddings) faiss_retriever = faiss_vectorstore.as_retriever(search_type="similarity", search_kwargs={"k": 5}) bm25_retriever = BM25Retriever.from_documents([LangchainDocument(page_content=d.page_content) for d in chunks]) bm25_retriever.k = 5 hybrid = EnsembleRetriever(retrievers=[faiss_retriever, bm25_retriever], weights=[0.5, 0.5]) return faiss_retriever, hybrid # --- Inference with Streaming --- def generate_stream_response(system_prompt): streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True) inputs = tokenizer(system_prompt, return_tensors="pt").to(model.device) generation_kwargs = dict(**inputs, streamer=streamer, max_new_tokens=300) thread = Thread(target=model.generate, kwargs=generation_kwargs) thread.start() partial_output = "" for token in streamer: partial_output += token yield partial_output # --- Main App Logic --- if uploaded_files: with st.spinner("Processing documents..."): docs = process_documents(uploaded_files) chunks = chunk_documents(docs) faiss_retriever, hybrid_retriever = build_retrievers(chunks) retriever = hybrid_retriever if hybrid_toggle else faiss_retriever st.success("Knowledge base ready. Ask your question below.") for msg in st.session_state.messages: with st.chat_message(msg["role"]): st.markdown(msg["content"]) user_input = st.chat_input("๐Ÿ’ฌ Ask DigiTwin something...") if user_input: st.chat_message("user").markdown(user_input) st.session_state.messages.append({"role": "user", "content": user_input}) with st.chat_message("assistant"): context_docs = retriever.get_relevant_documents(user_input) context_text = "\n".join([doc.page_content for doc in context_docs]) system_prompt = ( "You are DigiTwin, an expert advisor in asset integrity, reliability, inspection, and maintenance " "of topside piping, structural, mechanical systems, floating units, pressure vessels (VII), and pressure safety devices (PSD's).\n\n" f"Context:\n{context_text}\n\n" f"User: {user_input}\nAssistant:" ) full_response = "" response_area = st.empty() for partial_output in generate_stream_response(system_prompt): full_response = partial_output response_area.markdown(full_response) st.session_state.messages.append({"role": "assistant", "content": full_response}) else: st.info("๐Ÿ‘ˆ Upload one or more PDFs or .txt files to begin.")